To understand the slow capacity activation behavior of anatase TiO as a sodium-ion battery anode during cycling, a nanoporous configuration was designed and prepared. On the basis of the comprehension of the Na-ion storage mechanism, the behavior is demonstrated to be related with the gradual formation of amorphous phase resulting from the phase transition during discharge. In addition, the level of phase transition is determined by the discharge rates and cycle numbers, which strongly affects the electrochemical performance of anatase TiO. Via a quick formation process of the amorphous phase in the initial cycles, the capacity activation is accelerated, and high initial capacity is achieved with no fading after 500 cycles. Particularly, anatase TiO displays surprisingly unique properties in the fast charge (even at 20 C, 6.7 A g) mode, delivering a 179 mA h g charge capacity. This study is significant for the comprehensive understanding of the controversial sodium storage mechanisms and unclear special behaviors occurring in anatase TiO, thus greatly contributing to better guidance on the computational studies and experiment technologies for further performance promotion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b13927 | DOI Listing |
Materials (Basel)
January 2025
School of Electrical and Information, Jilin Engineering Normal University, Changchun 130052, China.
Phthalocyanine-sensitized TiO significantly enhances photocatalytic performance, but the method of phthalocyanine immobilization also plays a crucial role in its performance. In order to investigate the effect of the binding strategy of phthalocyanine and TiO on photocatalytic performance, a dual-pathway study has been conducted. On the one hand, zinc-tetra (-carbonylacrylic) aminephthalocyanine (Pc) was directly grafted onto the surface of FeO@SiO@TiO (FST).
View Article and Find Full Text PDFMolecules
December 2024
Chair for Integrated Systems and Photonics, Department of Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany.
Biological neural circuits are based on the interplay of excitatory and inhibitory events to achieve functionality. Axons form long-range information highways in neural circuits. Axon pruning, i.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
The concept of using polyaniline/titanium dioxide heterostructures as efficient photocatalysts is based on the synergistic effect of conducting polymer and metal oxide semiconductors. Due to inconclusive literature reports, the effect of different polyaniline/TiO ratios on photocatalytic activity under UV and visible light was investigated. In most papers, non-recommended dyes are used as model compounds to evaluate visible light activity.
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemistry, Yanbian University, Yanji, 133002, Jilin, China. Electronic address:
Exosomes have emerged as a powerful biomarker for early cancer diagnosis, however, accurately detecting cancer-derived exosomes in biofluids remains a crucial challenge. In this study, we present a novel label-free electrochemical biosensor utilizing titanium dioxide nanotube array films (TiONTAs) for the sensitive detection of exosomes in complex biological samples. This innovative biosensor takes advantage of the excellent electrochemical properties of TiONTAs and their specific interactions with the phosphate groups of exosomes.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China. Electronic address:
Glycerol is one of the most important biomass platform compounds that is a by-product of biodiesel production, and the selective cleavage of the CC bond of glycerol to produce liquid hydrogen carriers (i.e., formic acid and formaldehyde) offers a viable strategy to alleviate the currently faced energy shortages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!