Background And Purpose: To propose and validate nonlinear registration techniques for generating subtraction images because of their ability to reduce artifacts and improve lesion detection and lesion volume quantification.

Methods: Postcontrast T -weighted spin echo and T -weighted dual echo images were acquired for 20 patients with relapsing-remitting multiple sclerosis (RRMS) on a monthly basis for a year (14 women, average age 33.6 ± 6.9). The T -weighted images from the first scan were used as a baseline for each patient. The images from the last scan were registered to the baseline image. Four different registration algorithms used for evaluation included; linear, halfway linear, nonlinear, and nonlinear halfway. Subtraction images were generated after brain extraction, intensity normalization, and Gaussian blurring. Lesion activity changes along with identified artifacts were scored on all four techniques by two independent observers. Additionally, quantitative analysis of the algorithms was performed by estimating the volume changes of simulated lesions and real lesions. For real lesion volume change analysis, five subjects were selected randomly. Subtraction images were generated between all the 11 time points and the baseline image using linear and nonlinear registration for the five subjects.

Results: Lesion activity detection resulted in similar performance among the four registration techniques. Lesion volume measurements on subtraction images using nonlinear registration were closer to lesion volume on T -weighted images. A statistically significant difference was observed among the four registration techniques while evaluating yin-yang artifacts. Pairwise comparisons showed that nonlinear registration results in the least amount of yin-yang artifacts, which are significantly different.

Conclusions: Nonlinear registration for generation of subtraction images has been demonstrated to be a promising new technique as it shows improvement in lesion activity change detection. This approach decreases the number of artifacts in subtraction images. With improved lesion volume estimates and reduced artifacts, nonlinear registration may lead to discarding less subject data and an improvement in the statistical power of subtraction imaging studies.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jon.12479DOI Listing

Publication Analysis

Top Keywords

nonlinear registration
28
subtraction images
28
lesion volume
20
registration techniques
12
lesion activity
12
images
11
registration
10
lesion
10
subtraction
8
lesion detection
8

Similar Publications

Background: An association exists between obesity and reduced testosterone levels in males. The propose of this research is to reveal the correlation between 15 indices linked to obesity and lipid levels with the concentration of serum testosterone, and incidence of testosterone deficiency (TD) among adult American men.

Methods: The study utilized information gathered from the National Health and Nutrition Examination Survey (NHANES) carried out from 2011 to 2016.

View Article and Find Full Text PDF

Background: Post-activation performance enhancement (PAPE) has demonstrated efficacy in acutely improving athletic performance. However, its distinction from general warm-up (GW) effects remains ambiguous, and experimental designs adopted in most PAPE studies exhibit important limitations.

Objectives: The aims of this work are to (i) examine the effects of research methodology on PAPE outcomes, (ii) explore PAPE outcomes in relation to comparison methods, performance measures, GW comprehensiveness, recovery duration, participants' characteristics, conditioning activity (CA) parameters, and (iii) make recommendations for future PAPE experimental designs on the basis of the results of the meta-analysis.

View Article and Find Full Text PDF

Background: Uncertainty about optimal tranexamic acid (TXA) dosage has led to significant practice variation in hip arthroplasty. We aimed to identify the optimal i.v.

View Article and Find Full Text PDF

This paper explores a multi-directional (multiple directional) shearing synchronous polarization phase-shifting interferometer that utilizes a birefringent crystal displacer. This design effectively mitigates nonlinear issues and environmental influences commonly encountered in synchronous phase-shifting interferometry. Additionally, it enables the acquisition of shear wavefront information from multiple directions.

View Article and Find Full Text PDF

Background: Exercise is widely used for obesity management, but the optimal doses of exercise for improving body mass index (BMI) in children and adolescents with overweight and obesity remain unclear. This study aimed to evaluate the dose‒response effects of various exercises on BMI in children and adolescents with overweight and obesity.

Methods: A systematic search was conducted in Web of Science (Core Collection), PubMed/MEDLINE, Embase, Scopus, and the Cochrane Library for randomized controlled trials on relevant studies, covering literature up to July 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!