Testicular Sertoli cells make a niche for the division and differentiation of germ cells. Sertoli cells respond to increased follicle-stimulating hormone (FSH) and testosterone (T) levels at the onset of puberty by producing paracrine factors which affect germ cells and trigger robust onset of spermatogenesis. Such paracrine support to germ cells is absent during infancy, despite Sertoli cells being exposed to high FSH and T within the infant testis. This situation is similar to certain cases of male idiopathic infertility where post-pubertal Sertoli cells fail to support germ cell division and differentiation in spite of endogenous or exogenous hormonal support. Defective Sertoli cells in such individuals may fail to express the full complement of their paracrine repertoire. Identification and supplementation with such factors may overcome Sertoli cells deficiencies and help trigger quantitatively and qualitatively normal differentiation of germ cells. To this end, we compared the transcriptome of FSH- and T-treated infant and pubertal monkey Sertoli cells by DNA microarray. Expression of Wnt3, a morphogen of the Wnt/β-catenin pathway, was higher in pubertal Sertoli cells relative to infant Sertoli cells. Transgenic mice were generated by us in which Wnt3 expression was curtailed specifically in post-pubertal Sertoli cells by shRNA. Subfertility and oligozoospermia were noticed in such animals with low Wnt3 expression in post-pubertal Sertoli cells along with diminished expression of Connexin43, a gap-junctional molecule essential for germ cell development. We report that the FSH- and T-targetedf Wnt3 governs Sertoli cell-mediated regulation of spermatogenesis and hence is crucial for fertility.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-017-2698-5DOI Listing

Publication Analysis

Top Keywords

sertoli cells
48
cells
16
germ cells
16
sertoli
13
wnt3 expression
12
post-pubertal sertoli
12
testicular sertoli
8
division differentiation
8
differentiation germ
8
support germ
8

Similar Publications

Background: Transgender and gender diverse (TGD) people seek gender-affirming care at any age to manage gender identities or expressions that differ from their birth gender. Gender-affirming hormone treatment (GAHT) and gender-affirming surgery may alter reproductive function and/or anatomy, limiting future reproductive options to varying degrees, if individuals desire to either give birth or become a biological parent.

Objective And Rationale: TGD people increasingly pursue help for their reproductive questions, including fertility, fertility preservation, active desire for children, and future options.

View Article and Find Full Text PDF

Transcriptional Profiling of Testis Development in Pre-Sexually-Mature Hezuo Pig.

Curr Issues Mol Biol

December 2024

College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.

Spermatogenesis is an advanced biological process, relying on intricate interactions between somatic and germ cells in testes. Investigating various cell types is challenging because of cellular heterogeneity. Single-cell RNA sequencing (scRNA-seq) offers a method to analyze cellular heterogeneity.

View Article and Find Full Text PDF

Phosphodiesterases, particularly the type 5 isoform (PDE5), have gained recognition as pivotal regulators of male reproductive physiology, exerting significant influence on testicular function, sperm maturation, and overall fertility potential. Over the past several decades, investigations have expanded beyond the original therapeutic intent of PDE5 inhibitors for erectile dysfunction, exploring their broader reproductive implications. This narrative review integrates current evidence from in vitro studies, animal models, and clinical research to clarify the roles of PDEs in effecting the male reproductive tract, with an emphasis on the mechanistic pathways underlying cyclic nucleotide signaling, the cellular specificity of PDE isoform expression, and the effects of PDE5 inhibitors on Leydig and Sertoli cell functions.

View Article and Find Full Text PDF

Multi-omics analysis and experimental verification reveal testicular fatty acid metabolism disorder in non-obstructive azoospermia.

Zool Res

January 2025

Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210000, China.

Increasing evidence implicates disruptions in testicular fatty acid metabolism as a contributing factor in non-obstructive azoospermia (NOA), a severe form of male infertility. However, the precise mechanisms linking fatty acid metabolism to NOA pathogenesis have not yet been fully elucidated. Multi-omics analyses, including microarray analysis, single-cell RNA sequencing (scRNA-seq), and metabolomics, were utilized to investigate disruptions in fatty acid metabolism associated with NOA using data from public databases.

View Article and Find Full Text PDF

Introduction: Cryptorchidism can damage cells in the cryptorchid testes due to elevated local temperatures, potentially impacting the fertility of the child in adulthood. Research indicates that vitamin D enhances sperm quality in adult males. This study aimed to explore whether vitamin D inhibits NLRP3 activation, thus helping to mitigate heat stress damage to testicular spermatogenic and Sertoli cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!