Inhibitory neurons are crucial for shaping and regulating the dynamics of the entire network, and disturbances in these neurons contribute to brain disorders. Despite the recent progress in genetic labeling techniques, the heterogeneity of inhibitory neurons requires the development of highly characterized tools that allow accurate, convenient, and versatile visualization of inhibitory neurons in the mouse brain. Here, we report a novel genetic technique to visualize the vast majority and/or sparse subsets of inhibitory neurons in the mouse brain without using techniques that require advanced skills. We developed several lines of Cre-dependent tdTomato reporter mice based on the vesicular GABA transporter (VGAT)-BAC, named VGAT-stop-tdTomato mice. The most useful line (line #54) was selected for further analysis based on two characteristics: the inhibitory neuron-specificity of tdTomato expression and the transgene integration site, which confers efficient breeding and fewer adverse effects resulting from transgene integration-related genomic disruption. Robust and inhibitory neuron-specific expression of tdTomato was observed in a wide range of developmental and cellular contexts. By breeding the VGAT-stop-tdTomato mouse (line #54) with a novel Cre driver mouse line, Galntl4-CreER, sparse labeling of inhibitory neurons was achieved following tamoxifen administration. Furthermore, another interesting line (line #58) was generated through the unexpected integration of the transgene into the X-chromosome and will be used to map X-chromosome inactivation of inhibitory neurons. Taken together, our studies provide new, well-characterized tools with which multiple aspects of inhibitory neurons can be studied in the mouse.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.24343DOI Listing

Publication Analysis

Top Keywords

inhibitory neurons
28
inhibitory
10
inhibitory neuron-specific
8
transgene integration
8
neurons
8
neurons mouse
8
mouse brain
8
mouse
6
neuron-specific cre-dependent
4
cre-dependent red
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!