Objective: To determine the beneficial effects of intraoperative high-field magnetic resonance imaging (MRI), multimodal neuronavigation, and intraoperative electrophysiological monitoring-guided surgery for treating supratentorial cavernomas.
Methods: Twelve patients with 13 supratentorial cavernomas were prospectively enrolled and operated while using a 1.5 T intraoperative MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring. All cavernomas were deeply located in subcortical areas or involved critical areas. Intraoperative high-field MRIs were obtained for the intraoperative "visualization" of surrounding eloquent structures, "brain shift" corrections, and navigational plan updates.
Results: All cavernomas were successfully resected with guidance from intraoperative MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring. In 5 cases with supratentorial cavernomas, intraoperative "brain shift" severely deterred locating of the lesions; however, intraoperative MRI facilitated precise locating of these lesions. During long-term (>3 months) follow-up, some or all presenting signs and symptoms improved or resolved in 4 cases, but were unchanged in 7 patients.
Conclusions: Intraoperative high-field MRI, multimodal neuronavigation, and intraoperative electrophysiological monitoring are helpful in surgeries for the treatment of small deeply seated subcortical cavernomas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5643761 | PMC |
http://dx.doi.org/10.1016/j.cdtm.2016.11.003 | DOI Listing |
World Neurosurg
December 2024
Department of Neurosurgery, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA. Electronic address:
J Clin Med
September 2024
Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany.
: Epilepsy surgery for extratemporal lobe epilepsy (ETLE) is challenging, particularly when MRI findings are non-lesional and seizure patterns are complex. Invasive diagnostic techniques are crucial for accurately identifying the epileptogenic zone and its relationship with surrounding functional tissue. Microscope-based augmented reality (AR) support, combined with navigation, may enhance intraoperative orientation, particularly in cases involving subtle or indistinct lesions, thereby improving patient outcomes and safety (e.
View Article and Find Full Text PDFJ Neurosurg Case Lessons
October 2024
Brain and Development Research Axis, Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada.
World Neurosurg
December 2024
Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; China Anti-Cancer Association Specialty Committee of Glioma, Peking Union Medical College Hospital, Beijing, China.
Clin Neurophysiol
November 2024
Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, and Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy. Electronic address:
Background: The neural activity of the Default Mode Network (DMN) is disrupted in patients with In Alzheimer's disease (AD).
Objectives: We used a novel multimodal approach to track neural signal propagation within the DMN in AD patients.
Methods: Twenty mild to moderate AD patients were recruited.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!