Oxalate, broadly found in both dietary and endogenous sources, is a primary constituent in 80% of kidney stones, an affliction that has tripled in prevalence over the last 40 years. Oxalate-degrading bacteria within the gut microbiota can mitigate the effects of oxalate and are negatively correlated with kidney stone formation, but bacteriotherapies involving oxalate-degrading bacteria have met with mixed results. To inform the development of more effective and consistent bacteriotherapies, we sought to quantify the interactions and limits between oxalate and an oxalate-adapted microbiota from the wild mammalian herbivore (woodrat), which consumes a high-oxalate diet in the wild. We tracked the microbiota over a variable-oxalate diet ranging from 0.2% to 12%, with the upper limit approximating 10× the level of human consumption. The microbiota was capable of degrading ~100% of dietary oxalate regardless of the amount consumed. However, the microbiota exhibited significant changes in diversity dynamically at the operational taxonomic unit (OTU), family, and community levels in accordance with oxalate input. Furthermore, a cohesive microbial network was stimulated by the consumption of oxalate and exhibited some resistance to the effects of prolonged exposure. This study demonstrates that the oxalate-adapted microbiota of exhibits a very high level of degradation and tolerance for oxalate. The bacteria associated with mammalian hosts exhibit extensive interactions with overall host physiology and contribute significantly to the health of the host. Bacteria are vital to the mitigation of the toxic effects of oxalate specifically as mammals do not possess the enzymes to degrade this compound, which is present in the majority of kidney stones. Contrary to the body of literature on a few oxalate-degrading specialists, our work illustrates that oxalate stimulates a broad but cohesive microbial network in a dose-dependent manner. The unique characteristics of the microbiota make it an excellent source for the development of bacteriotherapies to inhibit kidney stone formation. Furthermore, this work successfully demonstrates methods to identify microbial networks responsive to specific toxins, their limits, and important elements such as microbial network cohesivity and architecture. These are necessary steps in the development of targeted bacteriotherapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5646245PMC
http://dx.doi.org/10.1128/mSphere.00428-17DOI Listing

Publication Analysis

Top Keywords

microbial network
12
oxalate
10
microbiota
8
dietary oxalate
8
mammalian herbivore
8
kidney stones
8
oxalate-degrading bacteria
8
effects oxalate
8
kidney stone
8
stone formation
8

Similar Publications

Purpose Of Review: The canonical pathogenesis of spondyloarthritis (SpA) involves inflammation driven by HLA-B27, type 3 immunity, and gut microbial dysregulation. This review based on information presented at the SPARTAN meeting highlights studies on the pathogenesis of SpA from the past year, focusing on emerging mechanisms such as the roles of microbe-derived metabolites, microRNAs (miRNAs) and cytokines in plasma exosomes, specific T cell subsets, and neutrophils.

Recent Findings: The induction of arthritis in a preclinical model through microbiota-driven alterations in tryptophan catabolism provides new insights as to how intestinal dysbiosis may activate disease via the gut-joint axis.

View Article and Find Full Text PDF

Advancements in MRSA treatment: the role of berberine in enhancing antibiotic therapy.

BMC Microbiol

December 2024

Department of Clinical Laboratory, Shanghai Eighth People's Hospital, No.8 Caobao Road, Xuhui District, Shanghai, 200235, P.R. China.

Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a significant public health problem. This study investigated the antimicrobial properties and mechanisms of berberine (BBR), a plant alkaloid, against MRSA, evaluating its potential to enhance antibiotic therapy.

Results: Berberine only demonstrated variable but significant inhibitory effects on 50 clinical MRSA strains.

View Article and Find Full Text PDF

The aim of this research is to create an automated system for identifying soil microorganisms at the genera level based on raw microscopic images of monocultural colonies grown in laboratory environment. The examined genera are: Fusarium, Trichoderma, Verticillium, Purpureolicillium and Phytophthora. The proposed pipeline deals with unprocessed microscopic images, avoiding additional sample marking or coloration.

View Article and Find Full Text PDF

To investigate the structural and functional similarities of microbial communities in burnt-sweetness alcoholized tobacco as a function of distance from the equator and their effects on tobacco quality, we sampled alcoholized tobacco from Chenzhou, Hunan Province, China and from Brazil and Zimbabwe, which are also burnt-sweetness-type tobacco producing regions, and performed high-throughput sequencing of tobacco bacterial and fungal communities along with an analysis of the main chemical constituents of the tobacco to analyze differences in the quality of the tobacco and similarities in the structure of the microbial communities. The total nitrogen, nicotine and starch contents of Chenzhou tobacco were greater than those of Brazilian and Zimbabwean tobacco, and the total sugar and reducing sugar contents of the Brazilian and Zimbabwean tobacco were greater than those of the Chenzhou tobacco (P < 0.05).

View Article and Find Full Text PDF

Enhanced printing and dyeing wastewater treatment using anaerobic-aerobic systems with bioaugmentation.

J Hazard Mater

December 2024

School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China; Key Laboratory of Biohydrometallurgy of Ministry of Education, Changsha, Hunan 410083, PR China. Electronic address:

Printing and dyeing wastewater (PDW) is characterized by various pollutants, making it one of the most difficult industrial wastewaters to treat and poses a serious threat to the natural environment and public health. This study investigated the use of an anaerobic-aerobic system combined with bioaugmentation using Ochrobactrum anthropi S1 to treat PDW. The results indicated that after three rounds of inoculation, Ochrobactrum anthropi S1 successfully colonized the system, achieving final removal efficiencies of reactive black 5, Cr(Ⅵ), COD, and ammonia nitrogen of 95 %, 65 %, 90 %, and 85 %, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!