Electrically driven monolithic subwavelength plasmonic interconnect circuits.

Sci Adv

Key Laboratory for the Physics and Chemistry of Nanodevices and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.

Published: October 2017

In the post-Moore era, an electrically driven monolithic optoelectronic integrated circuit (OEIC) fabricated from a single material is pursued globally to enable the construction of wafer-scale compact computing systems with powerful processing capabilities and low-power consumption. We report a monolithic plasmonic interconnect circuit (PIC) consisting of a photovoltaic (PV) cascading detector, Au-strip waveguides, and electrically driven surface plasmon polariton (SPP) sources. These components are fabricated from carbon nanotubes (CNTs) via a CMOS (complementary metal-oxide semiconductor)-compatible doping-free technique in the same feature size, which can be reduced to deep-subwavelength scale (~λ/7 to λ/95, λ = 1340 nm) compared with the 14-nm technique node. An OEIC could potentially be configured as a repeater for data transport because of its "photovoltaic" operation mode to transform SPP energy directly into electricity to drive subsequent electronic circuits. Moreover, chip-scale throughput capability has also been demonstrated by fabricating a 20 × 20 PIC array on a 10 mm × 10 mm wafer. Tailoring photonics for monolithic integration with electronics beyond the diffraction limit opens a new era of chip-level nanoscale electronic-photonic systems, introducing a new path to innovate toward much faster, smaller, and cheaper computing frameworks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5650483PMC
http://dx.doi.org/10.1126/sciadv.1701456DOI Listing

Publication Analysis

Top Keywords

electrically driven
12
driven monolithic
8
plasmonic interconnect
8
monolithic
4
monolithic subwavelength
4
subwavelength plasmonic
4
interconnect circuits
4
circuits post-moore
4
post-moore era
4
era electrically
4

Similar Publications

MITIGATING OVER-SATURATED FLUORESCENCE IMAGES THROUGH A SEMI-SUPERVISED GENERATIVE ADVERSARIAL NETWORK.

Proc IEEE Int Symp Biomed Imaging

May 2024

Department of Electrical and Computer Engineering, Nashville, TN, USA.

Multiplex immunofluorescence (MxIF) imaging is a critical tool in biomedical research, offering detailed insights into cell composition and spatial context. As an example, DAPI staining identifies cell nuclei, while CD20 staining helps segment cell membranes in MxIF. However, a persistent challenge in MxIF is saturation artifacts, which hinder single-cell level analysis in areas with over-saturated pixels.

View Article and Find Full Text PDF

This paper addresses the participation of independent aggregators (IAs) for demand response (DR) in European electricity markets. An IA is an aggregator trading the flexibility of consumers of which it is not the electricity supplier. Particularly, we focus on the controversial issue of a compensation payment from the IA to the supplier for energy sourcing.

View Article and Find Full Text PDF

Observation of Real-Time Spin-Orbit Torque Driven Dynamics in Antiferromagnetic Thin Film.

Adv Mater

January 2025

Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA.

In the burgeoning field of spintronics, antiferromagnetic materials (AFMs) are attracting significant attention for their potential to enable ultra-fast, energy-efficient devices. Thin films of AFMs are particularly promising for practical applications due to their compatibility with spin-orbit torque (SOT) mechanisms. However, studying these thin films presents challenges, primarily due to the weak signals they produce and the rapid dynamics driven by SOT, that are too fast for conventional electric transport or microwave techniques to capture.

View Article and Find Full Text PDF

Altering the generation route of reactive species is a potent means to augment the photocatalytic activity. In this study, MoS/MIL-101(Fe) S-scheme heterojunction (MF2) is prepared using a water/solvent thermal method for photocatalytic degradation of chlorsulfuron. Driven by the internal electric field, the local electron density of MF2 is redistributed, thus enhancing the adsorption of O.

View Article and Find Full Text PDF

Flexible Moisture-Driven Electricity Generators Based on Heterogeneous Gels and Carbon Nanotubes.

ACS Appl Mater Interfaces

January 2025

College of Textile and Clothing Engineering, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.

Recently developed asymmetric heterogeneous moisture-driven electricity generators (AHMEGs) are advantageous for harvesting energy from ubiquitous moisture due to their superior output performance and possible flexibility. However, the regeneration of AHMEG has seldom been explored. Here, we report the fabrication of flexible AHMEGs with regeneration ability simply by asymmetrically incorporating carbon nanotubes into a bilayer-structured gel with heterogeneities of both hygroscopicity and charge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!