TLR4 Ligands Selectively Synergize to Induce Expression of IL-8.

Adv Wound Care (New Rochelle)

Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York.

Published: October 2017

Dysfunctional remodeling of the extracellular matrix contributes to the formation of TLR-dependent feed forward loops that drive chronic inflammation. We have previously shown that two Type III domains of Fibronectin, FnEDA and FnIII-1c, cooperate to induce the synergistic release of interleukin 8 (IL-8) from dermal fibroblasts. We now identify steps in the TLR4 pathway where synergy can be demonstrated as well as additional kinases functioning in fibronectin activation of TLR4 signaling. We also evaluate the ligand and cell-type specificity of this synergistic response. FnEDA, FnIII-1c, and lipopolysaccharide (LPS)-induced genes in fibroblasts were analyzed by a quantitative reverse transcription-polymerase chain reaction (qPCR) and protein was measured by an enzyme-linked immunosorbent assay (ELISA). Kinases functioning in gene expression were identified by using specific inhibitors. Activated TLR4-dependent effector molecules were identified by cell fractionation and Western blot and quantified by image analysis. The addition of FnEDA and FnIII-1c to dermal fibroblasts resulted in a synergistic increase in the expression of IL-8, tumor necrosis factor alpha (TNF-α), and vascular cell adhesion molecule (VCAM-1). Synergy between these domains was detected at the level of nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) and inhibitor of kappa B kinase (IKK) activation. Induction of IL-8 by fibronectin ligands was partially attenuated in the presence of inhibitors to either epidermal growth factor receptor or Src kinases. FnIII-1c also synergized with LPS to induce IL-8 in dermal fibroblasts, whereas the combined effect of FnEDA and LPS on IL-8 synthesis was additive. In contrast, synergistic responses to these ligands were not observed in THP-1 monocytic cells. The data suggest that chronic inflammation may be driven by matrix- and pathogen-derived TLR4 ligands that work in synergy to promote an exuberant innate response. The data suggest that the molecular mechanism underlying synergistic responses to TLR4 ligands lies upstream of IKK activation, likely in the molecular composition of the TLR4 receptor complex that assembles in response to each ligand. In addition, synergistic responses to TLR4 activation may be both cell-type and ligand specific.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5649419PMC
http://dx.doi.org/10.1089/wound.2017.0735DOI Listing

Publication Analysis

Top Keywords

tlr4 ligands
12
fneda fniii-1c
12
dermal fibroblasts
12
synergistic responses
12
expression il-8
8
chronic inflammation
8
il-8 dermal
8
kinases functioning
8
ikk activation
8
responses tlr4
8

Similar Publications

A novel biomarker of COVI-19: MMP8 emerged by integrated bulk RNAseq and single-cell sequencing.

Sci Rep

December 2024

Department of Rehabilitative medicine, Shaanxi Provincial People's Hospital, No.256, Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, China.

COVID-19 has been emerging as the most influential illness which has caused great costs to the heath of population and social economy. Sivelestat sodium (SS) is indicated as an effective cure for lung dysfunction, a characteristic symptom of COVID-19 infection, but its pharmacological target is still unclear. Therefore, a deep understanding of the pathological progression and molecular alteration is an urgent issue for settling the diagnosis and therapy problems of COVID-19.

View Article and Find Full Text PDF

TLR4 Targeting: A Promising Therapeutic Approach Across Multiple Human Diseases.

Curr Protein Pept Sci

December 2024

Department of Pharmacy, Galgotias University, Greater Noida, Uttar Pradesh 201310, India.

TLR4 stands at the forefront of innate immune responses, recognizing various pathogen- associated molecular patterns and endogenous ligands, thus serving as a pivotal mediator in the immune system's defense against infections and tissue damage. Beyond its canonical role in infection, emerging evidence highlights TLR4's involvement in numerous non-infectious human diseases, ranging from metabolic disorders to neurodegenerative conditions and cancer. Targeting TLR4 signaling pathways presents a promising therapeutic approach with broad applicability across these diverse pathological states.

View Article and Find Full Text PDF

Peroxiredoxin 1 (PRDX1), an intracellular antioxidant enzyme, has emerged as a regulator of inflammatory responses via Toll-like receptor 4 (TLR4) signaling. Despite this, the mechanistic details of the PRDX1-TLR4 axis and its impact on osteoclast differentiation remain elusive. Here, we show that PRDX1 suppresses RANKL-induced osteoclast differentiation.

View Article and Find Full Text PDF

Protective effects of Sulforaphene on kidney damage and gut dysbiosis in high-fat diet plus streptozotocin-induced diabetic mice.

Food Chem

December 2024

State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:

Diabetic nephropathy (DN) is one of the most serious and prevalent complications associated with diabetes. Consequently, antidiabetic drugs or foods potentially protecting the kidneys are of significant therapeutic value. Sulforaphene (SFE) is a natural isothiocyanate derived from radish seeds, known for its anti-inflammatory and antioxidant properties.

View Article and Find Full Text PDF

Toll-like receptor 4 (TLR4) is an important mediator that activates bacterial inflammation through its signaling pathway. It binds lipopolysaccharide (LPS) in the presence of myeloid differentiation protein 2 (MD2) to dimerise the TLR4-MD2-LPS complex. The TLR4 mediated signaling pathway stimulates cytokine production in humans, initiating inflammatory responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!