Purpose: Sex and age are critical factors in a variety of retinal diseases but have garnered little attention in preclinical models. The current lack of knowledge impairs informed decision making regarding inclusion and design of studies that incorporate both sexes and/or the effects of aging. The goal of this study was to examine normative mouse retina gene expression in both sexes and with advancing age.
Methods: Retinal gene expression in female and male C57BL/6JN mice at 3 months and 24 months of age were compared for sex differences and aging responses through whole transcriptome microarray analysis. Sex differences and age-related changes were examined in the context of cellular pathways and processes, regulatory patterns, and cellular origin, as well as for overlap with described changes in retinal disease models. Selected age and sex differences were confirmed with quantitative PCR.
Results: Age-related gene expression changes demonstrated commonalities and sexually divergent responses. Several cellular pathways and processes, especially inflammation-related, are affected and were over-represented in fibroblast, microglial, and ganglion cell-specific genes. Lifelong, and age-dependent, sex differences were observed and were over-represented in fibroblast-specific genes. Age and sex differences were also observed to be regulated in models of diabetic retinopathy, glaucoma, and other diseases.
Conclusions: These findings demonstrate that most age-related changes in retinal gene expression are sexually divergent and that there are significant sex differences in gene expression throughout the lifespan. These data serve as a resource for vision researchers seeking to include sex and age as factors in their preclinical studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5640516 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!