Recycled iron fuels new production in the eastern equatorial Pacific Ocean.

Nat Commun

Department of Earth System Science, University of California, Irvine, CA, 92697, USA.

Published: October 2017

AI Article Synopsis

Article Abstract

Nitrate persists in eastern equatorial Pacific surface waters because phytoplankton growth fueled by nitrate (new production) is limited by iron. Nitrate isotope measurements provide a new constraint on the controls of surface nitrate concentration in this region and allow us to quantify the degree and temporal variability of nitrate consumption. Here we show that nitrate consumption in these waters cannot be fueled solely by the external supply of iron to these waters, which occurs by upwelling and dust deposition. Rather, a substantial fraction of nitrate consumption must be supported by the recycling of iron within surface waters. Given plausible iron recycling rates, seasonal variability in nitrate concentration on and off the equator can be explained by upwelling rate, with slower upwelling allowing for more cycles of iron regeneration and uptake. The efficiency of iron recycling in the equatorial Pacific implies the evolution of ecosystem-level mechanisms for retaining iron in surface ocean settings where it limits productivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5653654PMC
http://dx.doi.org/10.1038/s41467-017-01219-7DOI Listing

Publication Analysis

Top Keywords

nitrate consumption
12
equatorial pacific
8
nitrate
8
surface waters
8
nitrate concentration
8
variability nitrate
8
iron surface
8
iron recycling
8
iron
7
recycled iron
4

Similar Publications

Purpose: This study aimed to evaluate the acute effects of beetroot extract and resveratrol supplementation (isolated and combined) on cardiac autonomic modulation and cardiovascular parameters recovery after exercise in individuals with coronary artery disease (CAD).

Methods: 14 males with CAD were submitted to 4 protocols consisting of 30 min (min) of rest, 30 min of aerobic exercise on a treadmill (60% of the heart rate reserve HRR), followed by 30 min of recovery. Before each protocol, the subjects consumed 500 mg of starch (placebo protocol), 500 mg of beetroot (beetroot protocol), or 500 mg of resveratrol (resveratrol protocol), or 500 mg of beetroot and 500 mg of resveratrol (combined protocol).

View Article and Find Full Text PDF

Relationship assessment of microbial community and cometabolic consumption of 2-chlorophenol.

Appl Microbiol Biotechnol

January 2025

Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Iztapalapa, CDMX, Mexico City, Mexico.

The relationship of microbial community and cometabolic consumption of 2-chlorophenol (2-CP) in a nitrifying sequencing batch reactor (SBR) was studied. The assessment of the population dynamics of the nitrifying sludge during the cometabolic 2-CP consumption with increasing ammonium (NH) concentrations in the SBR showed the presence of 39 different species of which 10 were always present in all cycles. Fifty-five percent of the species found were grouped as Proteobacteria (45% as β-proteobacteria and 10% as γ-proteobacteria class), 30% as Acidobacteria, and 15% as Deinococcus-Thermus phyla.

View Article and Find Full Text PDF

Rare cases of nitrite poisoning by accidental ingestion: Clinical and medico-legal aspects.

Leg Med (Tokyo)

January 2025

Department of Forensic Medicine, Faculty of Medicine, Jagiellonian University Medical College, Grzegórzecka 16 31-531 Kraków, Poland. Electronic address:

This paper reports three rare cases of accidental sodium nitrite poisoning, including one fatality, caused by the consumption of aspic purchased from a private vendor. Clinical symptoms included cyanosis, hypotension, and respiratory distress, with methemoglobin (MetHb) levels ranging from 5 % to 41.7 %.

View Article and Find Full Text PDF

Electrochemical nitrate reduction (NORR) to ammonia presents a promising alternative strategy to the traditional Haber-Bosch process. However, the competitive hydrogen evolution reaction (HER) reduces the Faradaic efficiency toward ammonia, while the oxygen evolution reaction (OER) increases the energy consumption. This study designs IrCu alloy nanoparticles as a bifunctional catalyst to achieve efficient NORR and OER while suppressing the unwanted HER.

View Article and Find Full Text PDF

Physio-biochemical and molecular mechanisms of low nitrogen stress tolerance in peanut (Arachis hypogaea L.).

Plant Mol Biol

January 2025

Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.

Nitrogen (N) is a major plant nutrient and its deficiency can arrest plant growth. However, how low-N stress impair plant growth and its related tolerance mechanisms in peanut seedlings has not yet been explored. To counteract this issue, a hydroponic study was conducted to explore low N stress (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!