Ocular smooth pursuit and fixation are typically viewed as separate systems, yet there is evidence that the brainstem fixation system inhibits pursuit. Here we present behavioral evidence that the fixation system modulates pursuit behavior outside of conscious awareness. Human observers (male and female) either pursued a small spot that translated across a screen, or fixated it as it remained stationary. As shown previously, pursuit trials potentiated the oculomotor system, producing anticipatory eye velocity on the next trial before the target moved that mimicked the stimulus-driven velocity. Randomly interleaving fixation trials reduced anticipatory pursuit, suggesting that a potentiated fixation system interacted with pursuit to suppress eye velocity in upcoming pursuit trials. The reduction was not due to passive decay of the potentiated pursuit signal because interleaving "blank" trials in which no target appeared did not reduce anticipatory pursuit. Interspersed short fixation trials reduced anticipation on long pursuit trials, suggesting that fixation potentiation was stronger than pursuit potentiation. Furthermore, adding more pursuit trials to a block did not restore anticipatory pursuit, suggesting that fixation potentiation was not overridden by certainty of an imminent pursuit trial but rather was immune to conscious intervention. To directly test whether cognition can override fixation suppression, we alternated pursuit and fixation trials to perfectly specify trial identity. Still, anticipatory pursuit did not rise above that observed with an equal number of random fixation trials. The results suggest that potentiated fixation circuitry interacts with pursuit circuitry at a subconscious level to inhibit pursuit. When an object moves, we view it with smooth pursuit eye movements. When an object is stationary, we view it with fixational eye movements. Pursuit and fixation are historically regarded as controlled by different neural circuitry, and alternating between invoking them is thought to be guided by a conscious decision. However, our results show that pursuit is actively suppressed by prior fixation of a stationary object. This suppression is involuntary, and cannot be avoided even if observers are certain that the object will move. The results suggest that the neural fixation circuitry is potentiated by engaging stationary objects, and interacts with pursuit outside of conscious awareness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700424 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2186-17.2017 | DOI Listing |
Oper Neurosurg (Hagerstown)
January 2025
Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Pudong, Shanghai, China.
Background And Objectives: Deep brain stimulation (DBS) is a well-established intervention for alleviating both motor and nonmotor symptoms of Parkinson disease. However, a common complication of stereotaxic DBS surgery is pneumocephalus, which can compromise electrode accuracy, complicate postoperative assessments, and negatively affect the long-term outcomes of DBS surgery. This report proposes a comprehensive and robust set of recommendations aimed at optimizing DBS surgical protocols to achieve zero pneumocephalus outcomes.
View Article and Find Full Text PDFBiotechnol Rep (Amst)
March 2025
Department of Sciences, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand.
Extracellular triacylglycerol hydrolases (ETH) play a critical role for microorganisms, acting as essential tools for lipid breakdown and survival in challenging environments. The pursuit of more effective ETH genes and enzymes through evolution holds significant potential for enhancing living conditions. This study employs a proteogenomic approach to identify high G+C ETH in a notable Gram-positive bacterium, .
View Article and Find Full Text PDFNatl Sci Rev
January 2025
School of Astronautics, Beihang University, Beijing 100191, China.
The pursuit of artificial neural networks that mirror the accuracy, efficiency and low latency of biological neural networks remains a cornerstone of artificial intelligence (AI) research. Here, we incorporated recent neuroscientific findings of self-inhibiting autapse and neuron heterogeneity for innovating a spiking neural network (SNN) with enhanced learning and memorizing capacities. A bi-level programming paradigm was formulated to respectively learn neuron-level biophysical variables and network-level synapse weights for nested heterogeneous learning.
View Article and Find Full Text PDFCurr Med Imaging
January 2025
Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India.
Background: Pneumonia is an acute respiratory infection that has emerged as the predominant catalyst for escalating mortality rates worldwide. In the pursuit of the prevention and prediction of pneumonia, this work employs the development of an advanced deep-learning model by using a federated learning framework. The deep learning models rely on the utilization of a centralized system for disease prediction on the medical imaging data and pose risks of data breaches and exploitation; however, federated learning is a decentralized architecture which significantly reduces data privacy concerns.
View Article and Find Full Text PDFJ Man Manip Ther
January 2025
Department of Physical Therapy, University of Mary, Bismarck, ND, USA.
Objective: Post-professional education in orthopedic manual physical therapy (OMPT) provides a unique pathway for clinicians to refine clinical skills and reasoning in pursuit of professional excellence. Despite these benefits, fellowship training demands significant personal and financial investment. Therefore, understanding whether fellowship education promotes professional growth, job satisfaction, and return on investment is essential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!