Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent improvements in data learning techniques have catalyzed the development of various clinical learning systems. However, for clinical applications, training from noisy data can cause significant misleading results, directly leading to potentially dangerous clinical decisions. Given its importance, this work targets to present a preliminary effort to identify corrupted vital sign data by analyzing the patient motions on hospital beds. Specifically, we design an embedded sensor-based motion detection platform to capture and categorize different noise-causing motion on intensive care unit beds through a pre-deployment study at the Ajou University Hospital. We design light-weight and low-resource demanding software for motion sensor data processing and evaluate its performance from real-patient traces collected at the ICU. Evaluation results using a ~200 minute data set show that our system detects and classifies patient motion states with 76% accuracy and well-identifies vital sign time-series regions affected by motion noise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2017.8037871 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!