Transcranial cerebellar direct current stimulation (tcDCS) can offer new insights into the cerebellar function and disorders, by modulating noninvasively the activity of cerebellar networks. Taking into account the functional interplay between the cerebellum and the cerebral cortex, we addressed the effects of unilateral tcDCS (active electrode positioned over the right cerebellar hemisphere) on the electroencephalographic (EEG) oscillatory activity and on the cortical network organization at resting state. Effects on spectral (de)synchronizations and functional connectivity after anodal and cathodal stimulation were assessed with respect to a sham condition. A lateralized synchronization over the sensorimotor area in gamma band, as well as an increase of the network segregation in sensory-motor rhythms and a higher communication between hemispheres in gamma band, were detected after anodal stimulation. The same measures after cathodal tcDCS returned responses similar to the sham condition.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2017.8037821DOI Listing

Publication Analysis

Top Keywords

transcranial cerebellar
8
cerebellar direct
8
direct current
8
current stimulation
8
resting state
8
sham condition
8
gamma band
8
stimulation
4
stimulation effects
4
effects brain
4

Similar Publications

Objectives: Ataxia is a common symptom in patients with Cerebellar subtype of Multiple system atrophy (MSA-C), but effective treatments remain elusive. The present study aims to investigate whether repetitive transcranial magnetic stimulation (rTMS) over the bilateral cerebellum could relieve ataxia in patients with MSA-C.

Patients And Methods: This is a single-center, randomized and double-blind trial.

View Article and Find Full Text PDF

Background: Essential tremor (ET) is the most common neurological movement disorder with few treatments and limited therapeutic efficacy, research into noninvasive and effective treatments is critical. Abnormal cerebello-thalamo-cortical (CTC) loop function are thought to be significant pathogenic causes of ET, with the cerebellum and cortex are common targets for ET treatment. In recent years, transcranial magnetic stimulation (TMS) has been recognized as a promising brain research technique owing to its noninvasive nature and safety.

View Article and Find Full Text PDF

Tourette syndrome (TS) is a neuropsychiatric disorder characterized by chronic motor and phonic tics, with a higher prevalence among boys. This condition can significantly impact patients' learning and daily life. Due to the limited efficacy and potential side effects of pharmacological treatments for TS, there is a critical need to develop novel, tailored therapeutic strategies.

View Article and Find Full Text PDF

Neural-electronic interfaces through delivering electroceuticals to lesions and modulating pathological endogenous electrical environments offer exciting opportunities to treat drug-refractory neurological disorders. Such an interface should ideally be compatible with the neural tissue and aggressive biofluid environment. Unfortunately, no interface specifically designed for the biofluid environments is available so far; instead, simply stacking an encapsulation layer on silicon-based substrates makes them susceptible to biofluid leakage, device malfunction, and foreign-body reactions.

View Article and Find Full Text PDF

The cerebellum is involved in non-motor processing, supported by topographically distinct cerebellar activations and closed-loop circuits between the cerebellum and the cortex. Disruptions to cerebellar function may negatively impact prefrontal function and processing. Cerebellar resources may be important for offloading cortical processing, providing crucial scaffolding for normative performance and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!