Pneumatic artificial muscles (PAMs) are frequently used actuators in soft robotics due to their structural flexibility. They are generally characterized by the tensile force due to the axial contraction and the radial force with volume expansion. To date, most applications of P AMs have utilized axial contractions. In contrast, we propose a novel way to control radial expansions of particular P AMs using anisotropic behaviors. P AMs generally consist of a cylindrical rubber bladder that expands with injection of air and multiple flexible but inextensible strings or mesh that surround the bladder to generate axial contraction force. We propose methods of generating radial expansion force in two ways. One is to control the spatial density of the strings that hold the bladder, and the other is to give asymmetric patterns directly to the bladder for geometrical anisotropy. To evaluate the performance of the actuators, soft sensors made of a hyperelastic material and a liquid conductor were attached to the P AMs for measuring local strains and pressures of the PAMs. We also suggest use of the proposed PAMs to a wearable therapeutic device for treating text neck symptoms as an application. The P AMs were used to exert a pressure to the back of the neck to recover the original spinal alignment from the deformed shape.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2017.8037766DOI Listing

Publication Analysis

Top Keywords

pneumatic artificial
8
artificial muscles
8
text neck
8
neck symptoms
8
actuators soft
8
axial contraction
8
ams
5
design anisotropic
4
anisotropic pneumatic
4
muscles applications
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!