A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Regression-based noninvasive estimation of intracranial pressure. | LitMetric

Monitoring of intracranial pressure (ICP) is indicated in patients with a variety of conditions affecting the brain and cerebrospinal fluid space. The measurement of ICP, however, is highly invasive as it requires placement of a catheter in the brain tissue or cerebral ventricular spaces. Several noninvasive techniques have been proposed to overcome this issue, and one class of approaches is based on analyzing cerebral blood flow velocity (CBFV) and arterial blood pressure (ABP) waveforms to infer ICP. Here, we analyze a physiologic model linking ICP to CBFV and ABP and present a regression-based approach to estimating ICP. We tested the model on 20 datasets recorded from three patients in intensive care. Our estimates achieve a mean error (bias) of -1.12 mmHg and a standard deviation of the error of 5.56 mmHg, for a root-mean-square error of 5.68 mmHg, when compared against the invasive ICP measurement. Since transcranial Doppler ultrasound based CBFV measurements depend on the Doppler angle φ between the direction of the ultrasound beam and the (main) direction of blood flow velocity, we investigated the robustness of our ICP estimates against variations in φ. Our results show a change in the estimated ICP that is <;1 mmHg if we assume φ ~ N(μ; σ), with μ = 0 and σ = 10°.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2017.8037733DOI Listing

Publication Analysis

Top Keywords

intracranial pressure
8
icp
8
blood flow
8
flow velocity
8
regression-based noninvasive
4
noninvasive estimation
4
estimation intracranial
4
pressure monitoring
4
monitoring intracranial
4
pressure icp
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!