Identification of the age of individuals from epigenetic biomarkers can reveal vital information for criminal investigation, disease prevention, and extension of life. DNA methylation changes are highly associated with chronological age and the process of disease development. Computational methods such as clustering, feature selection and regression can be utilised to construct quantitative model of aging. In this study, we utilised 473034 CpG biomarkers from whole blood of 656 individuals aged 19 to 101 to construct predictive models and we treat the development of this age predictive model as extremely high-dimensional regression problem that is relatively understudied. Unlike semi-supervised and supervised feature selection methods, unsupervised feature selection methods are generally good at removing irrelevant features that can act as noise. In this study, along with the entire feature set, four different unsupervised feature selection methods (USFSMs) are therefore considered for the quantitative prediction of human ages. Since USFSMs are independent of any predictive method, support vector regression is then used to evaluate the prediction performances of the unsupervised feature selection methods. We proposed a novel k-means based unsupervised feature selection method to predict human ages by utilising CpG dinucleotides. Experimental results have validated the effectiveness of the proposed method as the optimum number of the CpG dinucleotides is found to be only 41 that corresponds to only 0.0087% of the entire feature space. To the best of our knowledge, this is the first study that presents exploration and comprehensive comparison of USFSMs in very high dimensional regression problems, particularly in epigenetic biomedical domain for the prediction of chronological age from changes in DNA methylation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2017.8037649 | DOI Listing |
Jpn J Radiol
January 2025
Artificial Intelligence and Translational Imaging (ATI) Lab, Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece.
Objective: Calcific tendinopathy, predominantly affecting rotator cuff tendons, leads to significant pain and tendon degeneration. Although US-guided percutaneous irrigation (US-PICT) is an effective treatment for this condition, prediction of patient' s response and long-term outcomes remains a challenge. This study introduces a novel radiomics-based model to forecast patient outcomes, addressing a gap in the current predictive methodologies.
View Article and Find Full Text PDFJ Med Syst
January 2025
Department of Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands.
This study aimed to develop and validate a cost-effective, customizable patient-specific phantom for simulating external ventricular drain placement, combining image segmentation, 3-D printing and molding techniques. Two variations of the phantom were created based on patient MRI data, integrating a realistic skin layer with anatomical landmarks, a 3-D printed skull, an agarose polysaccharide gel brain, and a ventricular cavity. To validate the phantom, 15 neurosurgeons, residents, and physician assistants performed 30 EVD placements.
View Article and Find Full Text PDFMol Genet Genomics
January 2025
Department of Botany, Biology Institute, UnB, Brasília, DF, 70910-900, Brazil.
Precursors of microRNAs (pre-miRNAs) are less used in silico to mine miRNAs. This study developed PmiR-Select based on covariance models (CMs) to identify new pre-miRNAs, detecting conserved secondary structural features across RNA sequences and eliminating the redundancy. The pipeline preceded PmiR-Select filtered 20% plant pre-miRNAs (from 38589 to 8677) from miRBase.
View Article and Find Full Text PDFNeurosurg Rev
January 2025
Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
Glioma is characterized by high heterogeneity and poor prognosis. Attempts have been made to understand its diversity in both genetic expressions and radiomic characteristics, while few integrated the two omics in predicting survival of glioma. This study was intended to investigate the connection between glioma imaging and genome, and examine its predictive value in glioma mortality risk and tumor immune microenvironment (TIME).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Salk Institute for Biological Studies, La Jolla, CA, USA.
Background: As humans age, some experience cognitive impairment while others do not. When impairment occurs, it varies in severity across individuals. Translationally relevant models are critical for understanding the neurobiological drivers of this variability, which is essential to uncovering the mechanisms underlying the brain's susceptibility to aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!