The heart-rate fractal dynamics can be assessed by Detrended Fluctuation Analysis (DFA), originally proposed for estimating a short-term coefficient, α (for scales n≤12 beats), and a long-term coefficient α (for longer scales). Successively, DFA was extended to provide a multiscale α, i.e. a continuous function of n, α(n); or a multifractal α, i.e. a function of the order q of the fluctuations moment, α(q). Very recently, a multifractal-multiscale DFA was proposed for evaluating multifractality at different scales separately. Aim of this work is to describe the multifractal multiscale dynamics of three cardiovascular signals often recorded beat by beat in physiological and clinical settings: systolic blood pressure (SBP), diastolic blood pressure (DBP) and pulse interval (PI, inverse of the heart rate). We recorded SBP, DBP and PI for at least 90' in 65 healthy volunteers at rest, and adapted the previously proposed multifractal multiscale DFA to estimate α as function of the temporal scale, τ, between 15 and 450 s, and of the order q, between -5 and 5. We report, for the first time: 1) substantial differences among α(q,τ) surfaces of PI, SBP and DBP; 2) a strong dependency of the degree of multifractality on the temporal scale.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2017.8037605DOI Listing

Publication Analysis

Top Keywords

blood pressure
16
multifractal multiscale
12
multiscale dfa
8
systolic blood
8
diastolic blood
8
heart rate
8
sbp dbp
8
temporal scale
8
dfa
5
multifractal
4

Similar Publications

Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.

View Article and Find Full Text PDF

Effects of Noise and Public Setting on Blood Pressure Readings : A Randomized Crossover Trial.

Ann Intern Med

January 2025

Department of Epidemiology and Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore; and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland (T.M.B.).

Background: Guidelines emphasize quiet settings for blood pressure (BP) measurement.

Objective: To determine the effect of noise and public environment on BP readings.

Design: Randomized crossover trial of adults in Baltimore, Maryland.

View Article and Find Full Text PDF

Background: Direct carotid-cavernous fistulas (CCFs) are relatively rare but dangerous complications of penetrating traumatic brain injury or maxillofacial trauma. A variety of clinical signs have been described, including ophthalmological and neurological ones. In some cases, severely altered cerebral blood flow can present as massive life-threatening bleeding through the nose, subarachnoid hemorrhage, and/or intraparenchymal hemorrhage.

View Article and Find Full Text PDF

We compared stretching, isometrics, and aerobic exercise for effectiveness in decreasing blood pressure post-exercise. Using a randomized crossover design, 5 males and 4 females (21.3y; normotensive) participated in four 30-minute sessions on separate days: static stretching (30s stretches, major muscle groups), isometric exercise, aerobic cycling (75% VO2peak), and control (rest), with blood pressure and heart rate measured before exercise (or rest) and for 60 minutes post-exercise (or rest).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!