A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A deep learning approach to adherence detection for type 2 diabetics. | LitMetric

Diabetes has become one of the biggest health problems in the world. In this context, adherence to insulin treatment is essential in order to avoid life-threatening complications. In this pilot study, a novel adherence detection algorithm using Deep Learning (DL) approaches was developed for type 2 diabetes (T2D) patients, based on simulated Continuous Glucose Monitoring (CGM) signals. A large and diverse amount of CGM signals were simulated for T2D patients using a T2D adapted version of the Medtronic Virtual Patient (MVP) model for T1D. By using these signals, different classification algorithms were compared using a comprehensive grid search. We contrast a standard logistic regression baseline to Multi- Layer Perceptrons (MLPs) and Convolutional Neural Networks (CNNs). The best classification performance with an average accuracy of 77:5% was achieved with CNN. Hence, this indicates the potential of DL, when considering adherence detection systems for T2D patients.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2017.8037462DOI Listing

Publication Analysis

Top Keywords

adherence detection
12
t2d patients
12
deep learning
8
cgm signals
8
learning approach
4
adherence
4
approach adherence
4
detection type
4
type diabetics
4
diabetics diabetes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!