Miniature inertial sensors mainly worn on waist, ankle and wrist have been widely used to measure walking speed of the individuals for lifestyle and/or health monitoring. Recent emergence of head-worn inertial sensors in the form of a smart eyewear (e.g. Recon Jet) or a smart ear-worn device (e.g. Sensixa e-AR) provides an opportunity to use these sensors for estimation of walking speed in real-world environment. This work studies the feasibility of using a head-worn inertial sensor for estimation of walking speed. A combination of time-domain and frequency-domain features of tri-axial acceleration norm signal were used in a Gaussian process regression model to estimate walking speed. An experimental evaluation was performed on 15 healthy subjects during free walking trials in an indoor environment. The results show that the proposed method can provide accuracies of better than around 10% for various walking speed regimes. Additionally, further evaluation of the model for long (15-minutes) outdoor walking trials reveals high correlation of the estimated walking speed values to the ones obtained from fusion of GPS with inertial sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2017.8037326DOI Listing

Publication Analysis

Top Keywords

walking speed
28
inertial sensors
12
walking
9
gaussian process
8
process regression
8
regression model
8
head-worn inertial
8
estimation walking
8
walking trials
8
speed
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!