We report in this paper an investigation of convolutional neural network (CNN) models for target prediction in time-locked image rapid serial visual presentation (RSVP) experiment. We investigated CNN models with 11 different designs of convolution filters in capturing spatial and temporal correlations in EEG data. We showed that for both within-subject and cross-subject predictions, the CNN models outperform the state-of-the-art algorithms: Bayesian linear discriminant analysis (BLDA) and xDAWN spatial filtering and achieved >6% improvement. Among the 11 different CNN models, the global spatial filter and our proposed region of interest (ROI) achieved best performance. We also implemented the deconvolution network to show how we can visualize from activated hidden units for target/nontarget events learned by the ROI-CNN. Our study suggests that deep learning is a powerful tool for RSVP target prediction and the proposed model is applicable for general EEG-based classifications in brain computer interaction research. The code of this project is available at https://github.com/ZijingMao/ROICNN.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2017.8037252DOI Listing

Publication Analysis

Top Keywords

cnn models
16
image rapid
8
rapid serial
8
serial visual
8
visual presentation
8
target prediction
8
design deep
4
deep convolutional
4
convolutional networks
4
networks prediction
4

Similar Publications

Background: Cardiovascular diseases (CVDs) continue to be the world's greatest cause of death. To evaluate heart function and diagnose coronary artery disease (CAD), myocardial perfusion imaging (MPI) has become essential. Artificial intelligence (AI) methods have been incorporated into diagnostic methods such as MPI to improve patient outcomes in recent years.

View Article and Find Full Text PDF

This study evaluates the efficacy of deep learning models in identifying infarct tissue on computed tomography perfusion (CTP) scans from patients with acute ischemic stroke due to large vessel occlusion, specifically addressing the potential influence of varying noise reduction techniques implemented by different vendors. We analyzed CTP scans from 60 patients who underwent mechanical thrombectomy achieving a modified thrombolysis in cerebral infarction (mTICI) score of 2c or 3, ensuring minimal changes in the infarct core between the initial CTP and follow-up MR imaging. Noise reduction techniques, including principal component analysis (PCA), wavelet, non-local means (NLM), and a no denoising approach, were employed to create hemodynamic parameter maps.

View Article and Find Full Text PDF

Problem: Machine learning (ML)/Deep learning (DL) techniques have been evolving to solve more complex diseases, but it has been used relatively little in Glioblastoma (GBM) histopathological studies, which could benefit greatly due to the disease's complex pathogenesis.

Aim: Conduct a systematic review to investigate how ML/DL techniques have influenced the progression of brain tumour histopathological research, particularly in GBM.

Methods: 54 eligible studies were collected from the PubMed and ScienceDirect databases, and their information about the types of brain tumour/s used, types of -omics data used with histopathological data, origins of the data, types of ML/DL and its training and evaluation methodologies, and the ML/DL task it was set to perform in the study were extracted to inform us of trends in GBM-related ML/DL-based research.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany.

Background: With a global ageing population, there is an increasing demand for fast and reliable early diagnosis of individuals. Convolutional neural networks (CNNs) have an immense potential in assisting clinicians in diagnosing dementia. Regional atrophy patterns, which are visible in T1-weighted MRI scans, have been consistently identified by the CNNs with high accuracy.

View Article and Find Full Text PDF

Automated diagnosis and classification of metacarpal and phalangeal fractures using a convolutional neural network: a retrospective data analysis study.

Acta Orthop

January 2025

Department of Orthopaedic Surgery, Danderyd Hospital, Stockholm; 2 Department of Clinical Sciences at Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden.

Background And Purpose:  Hand fractures are commonly presented in emergency departments, yet diagnostic errors persist, leading to potential complications. The use of artificial intelligence (AI) in fracture detection has shown promise, but research focusing on hand metacarpal and phalangeal fractures remains limited. We aimed to train and evaluate a convolutional neural network (CNN) model to diagnose metacarpal and phalangeal fractures using plain radiographs according to the AO/OTA classification system and custom classifiers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!