We present a prototype design of dual element photoplethysmograph (PPG) probe along with associated measurement system for carotid local pulse wave velocity (PWV) evaluation in a non-invasive and continuous manner. The PPG probe consists of two identical sensing modules placed 23 mm apart. Simultaneously measured blood pulse waveforms from these arterial sites were processed and the pulse transit time delay was resolved using the developed application-specific software. The ability of developed PPG probe and associated measurement system to detect acute changes in carotid local PWV due to blood pressure (BP) variations was experimentally validated by an in-vivo study. Intra-subject carotid BP elevation was achieved by an upper arm cuff based occlusion, which offered a controlled way of local PWV escalation. The elevated carotid BP values were also recorded by a calibrated pressure tonometer prior to the study, and was used as a reference. A significant increment (1.0 - 2.6 m/s) in local PWV was observed and was proportional to the BP increment induced by the occlusive reactive hyperemia. Study results demonstrated the feasibility of real-time signal acquisition and reliable local PWV evaluation under normal and elevated BP conditions using the developed measurement system.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2017.8037169DOI Listing

Publication Analysis

Top Keywords

local pwv
16
ppg probe
12
measurement system
12
blood pressure
8
local pulse
8
pulse wave
8
wave velocity
8
probe associated
8
associated measurement
8
carotid local
8

Similar Publications

The local pulse wave velocity (PWV) from large elastic arteries and its pressure-dependent changes within a cardiac cycle are potential biomarkers for cardiovascular risk stratification. However, pulse wave reflections can impair the accuracy of local PWV measurements. We propose a method to measure pressure-dependent variations in local PWV while minimizing the influence of pulse wave reflections.

View Article and Find Full Text PDF

Sex Differences in Gut Microbiota and Their Relation to Arterial Stiffness (MIVAS Study).

Nutrients

December 2024

Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), 37005 Salamanca, Spain.

Background: Recent research highlights the potential role of sex-specific variations in cardiovascular disease. The gut microbiome has been shown to differ between the sexes in patients with cardiovascular risk factors.

Objectives: The main objective of this study is to analyze the differences between women and men in the relationship between gut microbiota and measures of arterial stiffness.

View Article and Find Full Text PDF

Runx2-NLRP3 axis orchestrates matrix stiffness-evoked vascular smooth muscle cell inflammation.

Am J Physiol Cell Physiol

February 2025

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.

Arterial stiffening is a hallmark of chronic kidney disease (CKD)-related cardiovascular events and is primarily attributed to the elevated matrix stiffness. Stiffened arteries are accompanied by low-grade inflammation, but the causal effects of matrix stiffness on inflammation remain unknown. For analysis of the relationship between arterial stiffness and vascular inflammation, pulse-wave velocity (PWV) and aortic inflammatory markers were analyzed in an adenine-induced mouse model of CKD in chronological order.

View Article and Find Full Text PDF

Novel T-cell subsets as non-invasive biomarkers of vascular damage along the predialysis stages of chronic kidney disease.

Front Med (Lausanne)

December 2024

Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.

Introduction: Cardiovascular disease is the major cause of premature death in chronic kidney disease (CKD) and vascular damage is often detected belatedly, usually evaluated by expensive and invasive techniques. CKD involves specific risk factors that lead to vascular calcification and atherosclerosis, where inflammation plays a critical role. However, there are few inflammation-related markers to predict vascular damage in CKD.

View Article and Find Full Text PDF

The carotid-femoral pulse wave velocity (PWV) method is used clinically to determine degrees of stiffness and other indices of disease. It is believed PWV measurement in retinal vessels may allow early detection of diseases. In this paper we present a new non-invasive method for estimating PWVs in retinal vein segments close to the optic disc centre, based on the measurement of blood column pulsation in retinal veins (reflective of vessel wall pulsation), using modified photoplethysmography (PPG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!