In the cost sensitive healthcare industry, an unplanned downtime of diagnostic and therapy imaging devices can be a burden on the financials of both the hospitals as well as the original equipment manufacturers (OEMs). In the current era of connectivity, it is easier to get these devices connected to a standard monitoring station. Once the system is connected, OEMs can monitor the health of these devices remotely and take corrective actions by providing preventive maintenance thereby avoiding major unplanned downtime. In this article, we present an overall methodology of predicting failure of these devices well before customer experiences it. We use data-driven approach based on machine learning to predict failures in turn resulting in reduced machine downtime, improved customer satisfaction and cost savings for the OEMs. One of the use-case of predicting component failure of PHILIPS iXR system is explained in this article.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2017.8037163 | DOI Listing |
Sci Adv
January 2025
Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Retinomorphic systems that can see, recognize, and respond to real-time environmental information will extend the complexity and range of tasks that an exoskeleton robot can perform to better assist physically disabled people. However, the lack of ultrasensitive, reconfigurable, and large-scale integratable retinomorphic devices and advanced edge-processing algorithms makes it difficult to realize retinomorphic hardware. Here, we report the retinomorphic hardware prototype with a 4096-pixel perovskite image sensor array as core module to endow embodied intelligent vision functionalities.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
Excitons, which are Coulomb bound electron-hole pairs, are composite bosons and thus at low temperature can form a superfluid state with a single well-defined amplitude and phase. We directly image this macroscopic exciton superfluid state in an hBN-separated MoSe-WSe heterostructure. At high density, we identify quasi-long-range order over the entire active area of our sample, through spatially resolved coherence measurements.
View Article and Find Full Text PDFMicrosurgery
January 2025
Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.
Background: The deep inferior epigastric perforator (DIEP) flap is currently the gold standard for autologous breast reconstruction. In cases where the DIEP is contraindicated, the profunda artery perforator (PAP) flap is now the preferred second-line option in our institution. The PAP flap poses unique challenges to the reconstructive surgeon, especially in Asian women with low body mass index (BMI).
View Article and Find Full Text PDFJ Med Syst
January 2025
Department of Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands.
This study aimed to develop and validate a cost-effective, customizable patient-specific phantom for simulating external ventricular drain placement, combining image segmentation, 3-D printing and molding techniques. Two variations of the phantom were created based on patient MRI data, integrating a realistic skin layer with anatomical landmarks, a 3-D printed skull, an agarose polysaccharide gel brain, and a ventricular cavity. To validate the phantom, 15 neurosurgeons, residents, and physician assistants performed 30 EVD placements.
View Article and Find Full Text PDFOral Maxillofac Surg
January 2025
Department of Orthodontics and Craniofacial Biology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
Purpose: This study aimed to evaluate the dental and skeletal stability one year after Miniscrew-Assisted Rapid Palatal Expansion (MARPE) by using 3D image data.
Methods: Patients with transverse maxillary deficiency from the age of 16 onwards were enrolled consecutively in this prospective longitudinal cohort study. The MARPE appliance was digitally and individually designed and fabricated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!