Artificial assembly of mature tissues in vitro is challenging from many viewpoints. Therefore, production of intermediate building blocks - cell spheroids expected to be a viable alternative. The purpose of this research is to develop a biomimetic system for scale up maintenance of spheroids in vitro, and to confirm basic performance of the device. The system consists of a 3D culture unit and a medium perfusion unit. The 3D culture unit is dedicated for spheroid culture without using scaffolds, eliminating concerns about biocompatibility of artificial materials. our culture vessel allows easy disassembly and tissue extraction, as well as the resulting tissue can be formed into an any desirable shape. The spheroids are cultured in a sealed environment and their life are sustained by hollow fiber perfusion fluidics. We confirmed by visual and by microscopic examination that no contamination did occur before and after spheroid inoculation. Moreover, we confirmed growth and fusion between cells when C2C12 spheroids were cultured in this system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2017.8037147 | DOI Listing |
Crit Rev Biochem Mol Biol
January 2025
Department of Chemistry, Emory University, Atlanta, GA, USA.
Mononuclear non-heme iron enzymes catalyze a wide array of important oxidative transformations. They are correspondingly diverse in both structure and mechanism. Despite significant evolutionary distance, it is becoming increasingly apparent that these enzymes nonetheless illustrate a compelling case of mechanistic convergence the formation of peroxo species bridging metal and substrate.
View Article and Find Full Text PDFBiomater Sci
January 2025
Electrochemical Process Engineering, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India.
Nanotechnology and 3D bioprinted scaffolds are revolutionizing the field of wound healing and skin regeneration. By facilitating proper cellular movement and providing a customizable structure that replicates the extracellular matrix, such technologies not only expedite the healing process but also ensure the seamless integration of new skin layers, enhancing tissue repair and promoting overall cell growth. This study centres on the creation and assessment of a nanostructured lipid carrier containing curcumin (CNLC), which is integrated into a 3D bioprinted PLA scaffold system.
View Article and Find Full Text PDFChem Sci
January 2025
School of Biomedical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
Intracellular viscosity is a critical microenvironmental factor in various biological systems, and its abnormal increase is closely linked to the progression of many diseases. Therefore, precisely controlling the release of bioactive molecules in high-viscosity regions is vital for understanding disease mechanisms and advancing their diagnosis and treatment. However, viscosity alone cannot directly trigger chemical reactions.
View Article and Find Full Text PDFACS Nano
January 2025
School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
Natural skin receptors use ions as signal carriers, while most of the developed artificial tactile sensors utilize electrons as information carriers. To imitate the biological ionic sensing behavior, here, we present a kind of biomimetic, ionic, and fully passive mechanotransduction mechanism leveraging mechanical modulation of interfacial ionic p-n junction (IPNJ) through microchannels. Sensors based on this mechanism do not rely on an external power supply and can encode external tactile stimuli into highly analogous signal outputs to those of natural skin receptors, in terms of both signal type (i.
View Article and Find Full Text PDFIn Vitro Model
June 2024
3B's Research Group, European Institute of Excellence in Tissue Engineering and Regenerative Medicine Headquarters, Parque de Ciência e Tecnologia, I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics - University of Minho, Zona Industrial da Gandra - Avepark, Barco, Guimaraes, 4805-017 Portugal.
Soft microfluidic systems play a pivotal role in personalized medicine, particularly in in vitro diagnostics tools and disease modeling. These systems offer unprecedented precision and versatility, enabling the creation of intricate three-dimensional (3D) tissue models that can closely emulate both physiological and pathophysiological conditions. By leveraging innovative biomaterials and bioinks, soft microfluidic systems can circumvent the current limitations involving the use of polydimethylsiloxane (PDMS), thus facilitating the development of customizable systems capable of sustaining the functions of encapsulated cells and mimicking complex biological microenvironments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!