To understand how memories are encoded in the hippocampus, we build memory decoding models to classify visual memories based on hippocampal activities in human. Model inputs are spatio-temporal patterns of spikes recorded in the hippocampal CA3 and CA1 regions of epilepsy patients performing a delayed match-to-sample (DMS) task. Model outputs are binary labels indicating categories and features of sample images. To solve the super high-dimensional estimation problem with short data length, we develop a multi-trial, sparse model estimation method utilizing B-spline basis functions with a large range of temporal resolutions and a regularized logistic classifier. Results show that this model can effectively avoid overfitting and provide significant amount of prediction to memory categories and features using very limited number of data points. Stable estimation of sparse classification function matrices for each label can be obtained with this multi-resolution, multi-trial procedure. These classification models can be used not only to predict memory contents, but also to design optimal spatio-temporal patterns for eliciting specific memories in the hippocampus, and thus have important implications to the development of hippocampal memory prostheses.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2017.8037006DOI Listing

Publication Analysis

Top Keywords

multi-resolution multi-trial
8
multi-trial sparse
8
sparse classification
8
visual memories
8
spatio-temporal patterns
8
categories features
8
model
5
classification model
4
model decoding
4
decoding visual
4

Similar Publications

To understand how memories are encoded in the hippocampus, we build memory decoding models to classify visual memories based on hippocampal activities in human. Model inputs are spatio-temporal patterns of spikes recorded in the hippocampal CA3 and CA1 regions of epilepsy patients performing a delayed match-to-sample (DMS) task. Model outputs are binary labels indicating categories and features of sample images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!