In Alzheimer's disease, the hippocampus is characterized by abundant deposition of amyloid peptides (amyloid β [Aβ]) and neuroinflammation. Adult hippocampal neurogenesis (AHN) is a form of plasticity that contributes to cognition and can be influenced by either or both pathology and neuroinflammation. Their interaction has been studied before in rapidly progressing transgenic mouse models with strong overexpression of amyloid precursor protein (APP) and/or presenilin 1. So far, changes in AHN and neuroinflammation remain poorly characterized in slower progressing models at advanced age, which approach more closely sporadic Alzheimer's disease. Here, we analyzed 10- to 26-month-old APP.V717I mice for possible correlations between Aβ pathology, microglia, and AHN. The age-related increase in amyloid pathology was closely paralleled by microglial CD68 upregulation, which was largely absent in age-matched wild-type littermates. Notably, aging reduced the AHN marker doublecortin, but not calretinin, to a similar extent in wild-type and APP.V717I mice between 10 and 26 months. This demonstrates that AHN is influenced by advanced age in the APP.V717I mouse model, but not by Aβ and microglial activation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2017.09.013DOI Listing

Publication Analysis

Top Keywords

appv717i mice
12
increase amyloid
8
amyloid pathology
8
hippocampal neurogenesis
8
alzheimer's disease
8
advanced age
8
amyloid
5
ahn
5
age-related slow
4
slow increase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!