Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures.

Adv Mater

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.

Published: December 2017

In the human body, many soft tissues with hierarchically ordered composite structures, such as cartilage, skeletal muscle, the corneas, and blood vessels, exhibit highly anisotropic mechanical strength and functionality to adapt to complex environments. In artificial soft materials, hydrogels are analogous to these biological soft tissues due to their "soft and wet" properties, their biocompatibility, and their elastic performance. However, conventional hydrogel materials with unordered homogeneous structures inevitably lack high mechanical properties and anisotropic functional performances; thus, their further application is limited. Inspired by biological soft tissues with well-ordered structures, researchers have increasingly investigated highly ordered nanocomposite hydrogels as functional biological engineering soft materials with unique mechanical, optical, and biological properties. These hydrogels incorporate long-range ordered nanocomposite structures within hydrogel network matrixes. Here, the critical design criteria and the state-of-the-art fabrication strategies of nanocomposite hydrogels with highly ordered structures are systemically reviewed. Then, recent progress in applications in the fields of soft actuators, tissue engineering, and sensors is highlighted. The future development and prospective application of highly ordered nanocomposite hydrogels are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201703045DOI Listing

Publication Analysis

Top Keywords

nanocomposite hydrogels
16
highly ordered
16
soft tissues
12
ordered nanocomposite
12
hydrogels highly
8
ordered structures
8
soft materials
8
biological soft
8
hydrogels
6
ordered
6

Similar Publications

The target of this novel work is to assess the immunosuppression, genotoxicity, histopathological alterations, and cumulative mortality induced by acute toxicity of magnetite nanogel (MNG) in Nile catfish. Furthermore, a subsequent 10-day depuration period is adopted to estimate the restoration of those disturbed indices. Nile catfish (n = 180) were allotted into four groups and exposed to different concentrations of MNG (0, 1/10, 1/8, and 1/5 96-h LC).

View Article and Find Full Text PDF

Surgical resection and postoperative adjuvant chemotherapy have enhanced the outlook for breast cancer patients. However, tumor relapse and serious side effects of chemotherapy continue to impact patients' quality of life. Designing injectable composite hydrogel made of biodegradable polymers providing sustained release of antiangiogenic and chemotherapeutic agents might play a vital role in elimination of cancer cells.

View Article and Find Full Text PDF

Ionic Strength-Induced Compartmentalization for Nanogel-in-Microgel Colloids.

Small

January 2025

DWI-Leibniz Institute for Interactive Materials e.V., RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany.

Compartmentalization is crucial for control over complex biological cascade reactions. In microgels, the formation of discrete compartments allows for simultaneous uptake and orthogonal release of physicochemically distinct drugs, among others. However, many state-of-the-art approaches yielding compartmentalized microgels require the use of specific, though not always biocompatible, components and temperatures well above the physiological range, which may damage possible biological cargo.

View Article and Find Full Text PDF

Reactive oxygen species (ROS)-mediated anticancer modalities, which disturb the redox balance of cancer cells through multi-pathway simulations, hold great promise for effective cancer management. Among these, cooperative physical and biochemical activation strategies have attracted increasing attention because of their spatiotemporal controllability, low toxicity, and high therapeutic efficacy. Herein, we demonstrate a nanogel complex as a multilevel ROS-producing system by integrating chloroperoxidase (CPO) into gold nanorod (AuNR)-based nanogels (ANGs) for cascade-amplifying photothermal-enzymatic synergistic tumor therapy.

View Article and Find Full Text PDF

Epigenetics mechanisms play a significant role in human diseases by altering DNA methylation status, chromatin structure, and/or modifying histone proteins. By modulating the epigenetic status, the expression of genes can be regulated without any change in the DNA sequence itself. Epigenetic drugs exhibit promising therapeutic efficacy against several epigenetically originated diseases including several cancers, neurodegenerative diseases, metabolic disorders, cardiovascular disorders, and so forth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!