Purpose Of Review: Increasing antimicrobial resistance in Salmonella Typhi is a serious public health concern, especially in industrializing countries. Here we review recent clinical and laboratory data concerning the evolution of antimicrobial resistance, with particular reference to the emergence resistance against fluoroquinolones, third generation cephalosporins, and azithromycin.

Recent Findings: The last 40 years have witnessed the sequential emergence of resistance to all first-line antimicrobials used in the treatment of S. Typhi infections. Multidrug resistance (MDR), defined by resistance to chloramphenicol, amoxicillin, and co-trimoxazole, emerged in the 1990s, followed rapidly by reduced susceptibility to fluoroquinolones. In the current decade, high-level fluoroquinolone resistance has emerged in south Asia and threatens to spread worldwide. Increasing reliance is now being placed on the activity of third generation cephalosporins and azithromycin, but resistance against these agents is developing. Carbapenems and tigecycline may be alternatives, although clinical data are sparse, and in some settings reversion to chloramphenicol and co-trimoxazole susceptibility is occurring. Therefore, older drugs may yet have a role in the treatment of S. Typhi infections.

Summary: Good surveillance, improved diagnostics, more prudent use of antimicrobials, and effective vaccines will all be critical to reducing the burden of disease caused by S. Typhi.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MOG.0000000000000406DOI Listing

Publication Analysis

Top Keywords

antimicrobial resistance
12
resistance
9
evolution antimicrobial
8
resistance salmonella
8
salmonella typhi
8
emergence resistance
8
third generation
8
generation cephalosporins
8
treatment typhi
8
typhi
5

Similar Publications

Polymyxins are last-resort antimicrobial peptides administered clinically against multi-drug resistant bacteria, specifically in the case of Gram-negative species. However, an increasing number of these pathogens employ a defense strategy that involves a relay of enzymes encoded by the pmrE (ugd) loci and the arnBCDTEF operon. The pathway modifies the lipid-A component of the outer membrane (OM) lipopolysaccharide (LPS) by adding a 4-amino-4-deoxy-l-arabinose (L-Ara4N) headgroup, which renders polymyxins ineffective.

View Article and Find Full Text PDF

Background: Wastewater systems are usually considered antibiotic resistance hubs connecting human society and the natural environment. Antibiotic usage can increase the abundance of both ARGs (antibiotic resistance genes) and MGEs (mobile gene elements). Understanding the transcriptomic profiles of ARGs and MGEs remains a major research goal.

View Article and Find Full Text PDF

Bacterial biofilms exhibit remarkable resistance against conventional antibiotics and are capable of evading the humoral immune response. They account for nearly 80% of chronic infections in humans. Development of bacterial biofilms on medical implants results in their malfunctioning and subsequently leads to high mortality rates worldwide.

View Article and Find Full Text PDF

Background: Direct acting antivirals (DAAs) have demonstrated remarkable efficacy, in achieving hepatitis C viral (HCV) elimination rates higher than 90%. One particular concern associated with treatment failure is the emergence of resistance associated substitutions (RASs) in the genome. The occurrence of RASs highlights the adaptability and resilience of the HCV.

View Article and Find Full Text PDF

Chicken meat is a major source of foodborne salmonellosis. In Japan, fluoroquinolones and third-generation cephalosporins are the first- and second-choice treatments for Salmonella gastroenteritis, respectively. We investigated the prevalence and antimicrobial resistance of Salmonella in 154 chicken meat products from Hokkaido (42), Tohoku (45), Kanto (5), and Kyushu (62), Japan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!