The catechin family of molecules that are present in the leaves of green tea has been under investigation since the antioxidant and anti-inflammatory properties of tea were discovered. Among multiple proposed therapeutic targets of these molecules, the direct interaction with nucleic acids has been proposed and experimentally observed but without clear knowledge about the potential binding modes between these ligands and DNA. One of these catechin structures, (-)-epigallocatechin gallate (EGCG), has three aromatic rings that could interact with double-stranded DNA via terminal base-pair stacking, intercalation, or through groove binding. Using enhanced sampling techniques and molecular dynamics simulations, we have found a stable complex between the EGCG ligand and DNA through intercalation of the trihydroxybenzoate aromatic ring and an ApC step. Moreover, we have calculated the absorption spectra of four possible binding modes and compared these to absorption profiles reported in the literature, and explored the possible DNA sequence preference for the EGCG ligand to bind. Our results suggest that an intercalative mode of interaction through the major groove is possible between the EGCG ligands and DNA with apparently very little DNA sequence selectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2017.1389306 | DOI Listing |
J Phys Chem B
January 2025
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
The microbial aminotransferase enzyme DapC is vital for lysine biosynthesis in various Gram-positive bacteria, including . Characterization of the enzyme's conformational dynamics and identifying the key residues for ligand binding are crucial for the development of effective antimicrobials. This study employs atomistic simulations to explore and categorize the dynamics of DapC in comparison to other classes of aminotransferase.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.
In the last few years, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been the cause of a worldwide pandemic, highlighting the need for novel antiviral agents. The main protease (M) of SARS-CoV-2 was immediately identified as a crucial enzyme for viral replication and has been validated as a drug target. Here, we present the design and synthesis of peptidomimetic M covalent inhibitors characterized by quinoline-based P moieties.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China, 310014. Electronic address:
Ethnopharmacological Relevance: The Chinese medicine sappanwood is primarily sourced from the dried heartwood of the medicinal plant Caesalpinia sappan Linn., which has been found with a variety of valuable properties including anti-inflammatory, anti-oxidant, and anti-viral effects. Preliminary investigations have demonstrated that sappanwood showed strong anti-SARS-CoV-2 M effects, but the key constituents responsible for SARS-CoV-2 M inhibition and their anti-M mechanisms have not been uncovered.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Regensburg, Faculty of Chemistry and Pharmacy, Institute of Inorganic Chemistry, Universitätsstraße 31, D-93053, Regensburg, GERMANY.
Aminophosphates are the focus of research on prebiotic phosphorylation chemistry. Their bifunctional nature also makes them a powerful class of organocatalysts. However, the structural chemistry and dynamics of proton-binding in phosphorylation and organocatalytic mechanisms are still not fully understood.
View Article and Find Full Text PDFWe introduce Hydrogen-Exchange Experimental Structure Prediction (HX-ESP), a method that integrates hydrogen exchange (HX) data with molecular dynamics (MD) simulations to accurately predict ligand binding modes, even for targets requiring significant conformational changes. Benchmarking HX-ESP by fitting two ligands to PAK1 and four ligands to MAP4K1 (HPK1), and comparing the results to X-ray crystallography structures, demonstrated that HX-ESP successfully identified binding modes across a range of affinities significantly outperforming flexible docking for ligands necessitating large conformational adjustments. By objectively guiding simulations with experimental HX data, HX-ESP overcomes the long timescales required for binding predictions using traditional MD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!