Polydopamine (PDA) coating as a bioinspired strategy for nanoparticles (NPs) has been extensively applied in cancer theranostics. However, a cellular-level understanding of nano-biointeraction of these PDA-coated NPs (PDNPs), which drives the fate of them and acts as a critical step to determine their efficacy, still remains unknown. Herein, we utilized the representative mesoporous silica NPs (MSNs) to be coated with PDA and study their nano-bioactivities in cancer cells. HeLa cell line was utilized as a model in this study. The PDNPs were discovered to be internalized through three specific pathways, that is, Caveolae-, Arf6-dependent endocytosis, and Rab34-mediated macropinocytosis (55%, 20% and 37% of uptake inhibition by nystatin, Arf6 knockdown, and rottlerin, respectively). Autophagy-mediated accumulation of PDNPs in lysosomes was observed and the formed PDA shells shedded in the lysosomes. Almost 40% of the NPs were transported out of cells via Rab8/10- and Rab3/26-mediated exocytosis pathways at our tested level. On the basis of these results, a novel combined cancer treatment strategy was further proposed using drug-loaded MSNs-PDA by (i) utilizing naturally intracellular mechanism-controlled PDA shedding for organelle-targeted release of drugs in lysosomes to generate lysosome impairment and (ii) blocking the demonstrated exocytosis pathways for enhanced therapeutic efficacy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.7b03021 | DOI Listing |
Pflugers Arch
January 2025
Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.
Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, USA.
Inositol polyphosphate-5-phosphatase E (INPP5E) is a 5-phosphatase critically involved in diverse physiological processes, including embryonic development, neurological function, immune regulation, hemopoietic cell dynamics, and macrophage proliferation, differentiation, and phagocytosis. Mutations in cause Joubert and Meckel-Gruber syndromes in humans; these are characterized by brain malformations, microphthalmia, situs inversus, skeletal abnormalities, and polydactyly. Recent studies have demonstrated the key role of INPP5E in governing intracellular processes like endocytosis, exocytosis, vesicular trafficking, and membrane dynamics.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale Et Fonctionnelle, 59000, Lille, France.
Glycans are known to be fundamental for many cellular and physiological functions. Congenital disorders of glycosylation (CDG) currently encompassing over 160 subtypes, are characterized by glycan synthesis and/or processing defects. Despite the increasing number of CDG patients, therapeutic options remain very limited as our knowledge on glycan synthesis is fragmented.
View Article and Find Full Text PDFDiabetes is associated with the dysfunction of glucagon-producing pancreatic islet α-cells, although the underlying mechanisms regulating glucagon secretion and α-cell dysfunction remain unclear. While insulin secretion from pancreatic β-cells has long been known to be partly controlled by intracellular phospholipid signaling, very little is known about the role of phospholipids in glucagon secretion. Here we show that TMEM55A, a lipid phosphatase that dephosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-5-phosphate (PI5P), regulates α-cell exocytosis and glucagon secretion.
View Article and Find Full Text PDFJ Inherit Metab Dis
January 2025
Department of Neurology and MetabERN; Esplugues de Llobregat, Synaptic Metabolism and Personalized Therapies Lab, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.
Cell trafficking is a tightly regulated biological process for the exchange of signals and metabolites between cell compartments, including four main processes: membrane trafficking (transport of membrane-bound vesicles), autophagy, transport along the cytoskeleton, and membrane contact sites. These processes are cross-sectional to cellular functions, ranging from the transportation of membrane proteins, membranes, and organelles to the elimination of damaged proteins and organelles. In consequence, cell trafficking is crucial for cell survival and homeostasis, serving as a cornerstone for cellular communication and facilitating interactions both with the surrounding environment and between different organelles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!