Acinetobacter baumannii is a ubiquitous multidrug-resistant bacteria that is found on a variety of surfaces, including skin, hair and soil. During the past decade, A. baumannii has emerged as a significant cause of nosocomial infections in the United States. Recent studies have highlighted the ability of some bacteria to utilize a wide variety of fatty acids as a membrane remodelling strategy. Considering this, we hypothesized that fatty acids may have an effect on the emerging pathogen A. baumannii. Thin-layer chromatography indicated structural alterations to major phospholipids. Liquid chromatography/mass spectrometry confirmed the assimilation of numerous exogenous polyunsaturated fatty acids (PUFAs) into the phospholipid species of A. baumannii. The incorporation of fatty acids affected several bacterial phenotypes, including membrane permeability, biofilm formation, surface motility and antimicrobial peptide resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.000556 | DOI Listing |
Front Immunol
January 2025
Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
Introduction: Synbiotics have revealed the possibility of improving constipation through gut microbiota. The synergistic efficacy of subsp. lactis BL-99 (BL-99) and fructooligosaccharide (FOS) on constipation have not been investigated.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe, Japan.
Objective: We aimed to evaluate microbiome and microbiota-derived C18 dietary polyunsaturated fatty acids (PUFAs), such as conjugated linoleic acid (CLA), and to investigate their differences that correlate with arthritis severity in collagen-induced arthritis (CIA) mice.
Methods: On day 84 after induction, during the chronic phase of arthritis, cecal samples were analyzed using 16S rRNA sequencing, and plasma and cecal digesta were evaluated using liquid chromatography-tandem mass spectrometry. Differences in microbial composition between 10 control (Ctrl) and 29 CIA mice or between the mild and severe subgroups based on arthritis scores were identified.
World Allergy Organ J
January 2025
Guangdong Provincial Engineering Research Center of Public Health Detection and Assessment, NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, PR China.
Background: Many studies reported the influence of infants' gut microbiota on atopic dermatitis (AD) postnatally, yet the role of maternal gut microbiota and plasma metabolites in infants' AD remains largely unexplored.
Methods: Sixty-three pregnant mother-infants were enrolled and followed after childbirth in Guangzhou, China. Demographic information, maternal stool and plasma samples, and records for infants' AD were collected.
Front Pharmacol
January 2025
Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China.
Background: Lipids are vital biomolecules involved in the formation of various biofilms. Seizures can cause changes in lipid metabolism in the brain. In-depth studies at multiple levels are urgently needed to elucidate lipid composition, distribution, and metabolic pathways in the brain after seizure.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Carbohydrates, lipids, bile acids, various inorganic salt ions and organic acids are the main nutrients or indispensable components of the human body. Dysregulation in the processes of absorption, transport, metabolism, and excretion of these metabolites can lead to the onset of severe metabolic disorders, such as type 2 diabetes, non-alcoholic fatty liver disease, gout and hyperbilirubinemia. As the second largest membrane receptor supergroup, several major families in the solute carrier (SLC) supergroup have been found to play key roles in the transport of substances such as carbohydrates, lipids, urate, bile acids, monocarboxylates and zinc ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!