A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Secondary collisions and injury severity: A joint analysis using structural equation models. | LitMetric

Secondary collisions and injury severity: A joint analysis using structural equation models.

Traffic Inj Prev

c Department of Modeling , Simulation & Visualization Engineering, Old Dominion University, Norfolk , Virginia.

Published: February 2018

Objective: This study aims to investigate the contributing factors to secondary collisions and the effects of secondary collisions on injury severity levels. Manhattan, which is the most densely populated urban area of New York City, is used as a case study. In Manhattan, about 7.5% of crash events become involved with secondary collisions and as high as 9.3% of those secondary collisions lead to incapacitating and fatal injuries.

Methods: Structural equation models (SEMs) are proposed to jointly model the presence of secondary collisions and injury severity levels and adjust for the endogeneity effects. The structural relationship among secondary collisions, injury severity, and contributing factors such as speeding, alcohol, fatigue, brake defects, limited view, and rain are fully explored using SEMs. In addition, to assess the temporal effects, we use time as a moderator in the proposed SEM framework.

Results: Due to its better performance compared with other models, the SEM with no constraint is used to investigate the contributing factors to secondary collisions. Thirteen explanatory variables are found to contribute to the presence of secondary collisions, including alcohol, drugs, inattention, inexperience, sleep, control disregarded, speeding, fatigue, defective brakes, pedestrian involved, defective pavement, limited view, and rain. Regarding the temporal effects, results indicate that it is more likely to sustain secondary collisions and severe injuries at night.

Conclusions: This study fully investigates the contributing factors to secondary collisions and estimates the safety effects of secondary collisions after adjusting for the endogeneity effects and shows the advantage of using SEMs in exploring the structural relationship between risk factors and safety indicators. Understanding the causes and impacts of secondary collisions can help transportation agencies and automobile manufacturers develop effective injury prevention countermeasures.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15389588.2017.1369530DOI Listing

Publication Analysis

Top Keywords

secondary collisions
52
collisions injury
16
injury severity
16
contributing factors
16
secondary
13
factors secondary
12
collisions
12
structural equation
8
equation models
8
investigate contributing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!