Complete NMR Assignment of Succinimide and Its Detection and Quantification in Peptides and Intact Proteins.

Anal Chem

Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.

Published: November 2017

Detecting and quantifying post-translational modifications (PTMs) in full-length proteins is a challenge, especially in the case of spontaneously occurring, nonenzymatic PTMs. Such a PTM is the formation of succinimide (Snn) in a protein that occurs spontaneously in prone primary sequences and leads typically to an equilibrium between Snn and its hydrolysis products isoaspartate (isoAsp) and aspartate. In order to detect these modifications in proteins by NMR spectroscopy, chemical shift assignments of reference compounds are required. We used peptide synthesis and 2D NMR spectroscopy to assign all H and C chemical shifts of Snn and isoAsp and found characteristic chemical shift correlations. To provide chemical shift reference data suitable for comparison with data of denatured proteins, we repeated the assignment in 7 M urea (pH 2.3) and in DMSO. Most characteristic of Snn are the two downfield shifted carbonyl chemical shifts, the chemical shift correlations of Cβ-Hβ of Snn and Cα-Hα of the succeeding residue which are clearly distinct from random coil chemical shift correlations. The characteristic 2D NMR fingerprints of Snn were used to detect and quantify this PTM in the model protein lysozyme, the biotherapeutic filgrastim, and the Fc part of immunoglobulin G1. Mass spectrometry (MS) was applied as an additional independent method. The orthogonality of the NMR and MS techniques allows cross-validation, which is especially important to search for subtle PTMs in proteins. Studying PTMs by NMR spectroscopy is a promising method to analyze proteins and peptides from natural sources, recombinant expression, or chemical synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.7b01645DOI Listing

Publication Analysis

Top Keywords

chemical shift
20
nmr spectroscopy
12
shift correlations
12
chemical
8
chemical shifts
8
proteins
6
snn
6
nmr
5
shift
5
complete nmr
4

Similar Publications

In this study, we report the design and development of a stable fluorescent probe that is selectively localized in the cytosol of Hela cells. We designed two probes, 1 and 2, with D-π-A (carbazole (Cbz)-vinyl-naphthalimide (NPI)) and A-π-D-π-A (NPI-vinyl-Cbz-vinyl-NPI) architecture, respectively. Probes 1 and 2 exhibit broad photoluminescence (PL) spectra ranging from green (550 nm) to far-red (800 nm) in solutions and aggregated states.

View Article and Find Full Text PDF

A Stable Zn(II) Metal-Organic Framework as Turn-On and Blue-Shift Fluorescence Sensor for Amino Acids and Dipicolinic Acid in Living Cells or Using Aerosol Jet Printing.

Inorg Chem

January 2025

School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.

Amino acids and dipicolinic acid (DPA) are important biomarkers for identifying human health. Establishing rapid, accurate, sensitive, and simple assays is essential for disease prevention and early diagnosis. In this work, a novel Zn(II) metal-organic framework (MOF) with the formula {[Zn(μ-OH)(BTDI)(dpp)]·dpp·4HO·2DMF} (, where denotes Jiangxi University of Science and Technology, HBTDI = 5,5'-(benzo[][1,2,5]thiadiazole-4,7-diyl)diisophthalic acid; dpp = 1,3-di(4-pyridyl)propane) was successfully synthesized via a mixed-ligands strategy.

View Article and Find Full Text PDF

The integration of artificial intelligence (AI) into new approach methods (NAMs) for toxicology rep-resents a paradigm shift in chemical safety assessment. Harnessing AI appropriately has enormous potential to streamline validation efforts. This review explores the challenges, opportunities, and future directions for validating AI-based NAMs, highlighting their transformative potential while acknowledging the complexities involved in their implementation and acceptance.

View Article and Find Full Text PDF

sp. strain p52, an aerobic dioxin degrader, was capable of utilizing petroleum hydrocarbons as the sole sources of carbon and energy for growth. In the present study, the degradation of the mixture of aliphatic hydrocarbons (hexadecane and tetradecane) and aromatic hydrocarbons (phenanthrene and anthracene) by strain p52 was examined.

View Article and Find Full Text PDF

Adjustment of Molecular Sorption Equilibrium on Catalyst Surface for Boosting Catalysis.

Acc Chem Res

January 2025

Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!