Non-aqueous Li-O batteries are promising for next-generation energy storage. New battery chemistries based on LiOH, rather than Li O , have been recently reported in systems with added water, one using a soluble additive LiI and the other using solid Ru catalysts. Here, the focus is on the mechanism of Ru-catalyzed LiOH chemistry. Using nuclear magnetic resonance, operando electrochemical pressure measurements, and mass spectrometry, it is shown that on discharging LiOH forms via a 4 e oxygen reduction reaction, the H in LiOH coming solely from added H O and the O from both O and H O. On charging, quantitative LiOH oxidation occurs at 3.1 V, with O being trapped in a form of dimethyl sulfone in the electrolyte. Compared to Li O , LiOH formation over Ru incurs few side reactions, a critical advantage for developing a long-lived battery. An optimized metal-catalyst-electrolyte couple needs to be sought that aids LiOH oxidation and is stable towards attack by hydroxyl radicals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033020 | PMC |
http://dx.doi.org/10.1002/anie.201709886 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!