Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The extensive extraction activity of mercury ores in Asturias (northwest Spain), also rich in As and Sb, has impacted the Nalón river estuary. The objective of this research was to assess the historical evolution of As-Hg-Sb accumulation in the salt marsh sediments of this area. For this purpose, sediment cores were collected from two different salt marshes (eastern and western river banks) in the estuarine environment to evaluate the degree of anthropogenic enrichment and the geochronology of As-Hg-Sb accumulation. Core subsampling was performed by cutting 2-cm-thick slices of sediments. The subsamples were then analysed for several physical and chemical parameters. Sedimentation rate was assessed by measuring short-lived radionuclides (excess Pb and Cs). Pre-mining levels of As-Hg-Sb were observed at core depths below 50 cm. In the less extended salt marsh (eastern river bank), maximum As-Hg-Sb concentrations of 87.48, 3.66, and 5.75 μg·g, respectively, were found at the core top as a consequence of long-term mining activity in the area. The vertical distribution of As-Hg-Sb was influenced by the single-point contamination sources, whereas grain-size variability and diagenetic remobilisation did not seem affected. Geochronological measurements showed that the depositional fluxes of As-Hg-Sb were influenced by anthropogenic input after 1900, when mining activity in the area was most intense. Hg mining ceased in 1969; however, the corresponding core profiles did not show a drastic decreasing trend in element fluxes, implying that the river drainage basin retains some "memory" of contamination which affects riverine sediments. A preliminary gross estimation of total As-Hg-Sb "trapped" in the Nalón river salt marsh sediments amounted to approximately 18.7, 1.0, and 0.7 t, respectively. These morphological structures suffer erosive processes, thus representing a potential source of these elements associated with sediments; consequently, management conservation and monitoring of salt marshes should be taken into consideration from this environmental point of view.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-017-0449-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!