Dihydromyricetin exerts a rapid antidepressant-like effect in association with enhancement of BDNF expression and inhibition of neuroinflammation.

Psychopharmacology (Berl)

Jiangsu Key laboratory for Translational Research and Therapy for Neuropsychiatric disorders, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China.

Published: January 2018

Rationale: Major depressive disorder (MDD) is a highly prevalent illness that affects large populations across the world, and increasing evidence suggests that neuroinflammation and levels of brain-derived neurotrophic factor (BDNF) are closely related to depression. Dihydromyricetin (DHM) is a kind of flavonoid natural product that has been reported to display multiple pharmacological effects, including anti-inflammatory and anti-oxidative properties, and these may contribute to ameliorate MDD.

Objective: This study investigated the effect of DHM on depression-related phenotypes in various experimental animal models.

Methods: The antidepressant-like effect of DHM was validated via depression-related behavioral tests in naïve male C57BL/6 mice, as well as in the acute lipopolysaccharide-induced mouse model of depression. The chronic unpredicted mild stress (CUMS) mouse model of depression was also used to assess the rapid antidepressant-like effect of DHM by tail suspension test (TST), forced swimming test (FST), locomotor activity, and sucrose preference test (SPT). The expression of BDNF and inflammatory factors were determined through Western blotting and enzyme-linked immunosorbent assay, respectively.

Results: DHM reduced immobility time in the TST and FST both in mice and the acute LPS-induced mouse model of depression. Seven days of DHM treatment ameliorated depression-related behaviors induced by CUMS, whereas similar treatment with the typical antidepressant venlafaxine did not. DHM activated the ERK1/2-CREB pathway and increased glycogen synthase kinase-3 beta (GSK-3β) phosphorylation at ser-9, with upregulation of BDNF expression, in both hippocampal tissues and cultured hippocampal cells.

Conclusion: The present data indicate that DHM exerts a more rapid antidepressant-like effect than does a typical antidepressant, in association with enhancement of BDNF expression and inhibition of neuroinflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00213-017-4761-zDOI Listing

Publication Analysis

Top Keywords

rapid antidepressant-like
12
bdnf expression
12
mouse model
12
model depression
12
exerts rapid
8
association enhancement
8
enhancement bdnf
8
expression inhibition
8
inhibition neuroinflammation
8
dhm
8

Similar Publications

General Anesthesia Occludes Ketamine's Antidepressant Response in a Rodent Model of Chronic Stress.

Psychedelic Med (New Rochelle)

December 2024

Departments of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Introduction: Psychedelic-induced experiences are thought to play an important role in the therapeutic actions of rapid-acting antidepressants. General anesthesia is one scenario in which patients can be rendered unconscious and masked to the psychedelic treatment, providing a simple yet effective method to examine drug-induced changes in the brain devoid of experiences.

Methods: Chronically stressed adult C57/BL6 male mice were given subhypnotic ketamine alone or ketamine and GABAergic anesthetic isoflurane at sedative (0.

View Article and Find Full Text PDF

Ketamine displays efficacious rapid-acting antidepressant (RAAD) activity in the rat chronic mild stress (CMS) model. It rapidly reverses anhedonia (CMS-induced sucrose consumption deficit) and attenuates working memory deficit (novel object recognition: NOR) following both systemic (intraperitoneal, i.p.

View Article and Find Full Text PDF

A novel insight into the antidepressant effect of cannabidiol: possible involvement of the 5-HT1A, CB1, GPR55, and PPARγ receptors.

Int J Neuropsychopharmacol

December 2024

Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China.

Background: Depression is a prevalent and disabling disorder that poses serious problems in mental health care, and rapid antidepressants are novel treatments for this disorder. Cannabidiol (CBD), a non-intoxicating phytocannabinoid, is thought to have therapeutic potential due to its important neurological and anti-inflammatory properties. Despite major advances in pharmacotherapy in experimental animals, the exact mechanism of antidepressant-like effects remains to be elucidated.

View Article and Find Full Text PDF
Article Synopsis
  • - The delta opioid receptor (DOP) is identified as a potential target for new antidepressants, as its selective agonist KNT-127 shows promise for rapid antidepressant effects while minimizing side effects.
  • - In experiments, KNT-127 reduced behaviors indicative of depression, such as immobility in the forced swimming test and social avoidance in stressed mice, effects that were reversed by inhibitors of mTOR and PI3K pathways.
  • - The study suggests that DOP agonists work by enhancing excitatory activity in the medial prefrontal cortex through the PI3K-Akt-mTOR signaling pathway, particularly by reducing GABA release from specific interneurons.
View Article and Find Full Text PDF

Rationale: Due to the numerous limitations of ketamine as a rapid-acting antidepressant drug (RAAD), research is still being conducted to find an effective and safe alternative to this drug. Recent studies indicate that the partial mGlu receptor negative allosteric modulator (NAM), 2-(2-(3-methoxyphenyl)ethynyl)-5-methylpyridine (M-5MPEP), has therapeutic potential as an antidepressant.

Objectives: The study aimed to investigate the potential rapid antidepressant-like effect of M-5MPEP in a mouse model of depression and to determine the mechanism of this action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!