AlyQ from Persicobacter sp. CCB-QB2 is an alginate lyase with three domains - a carbohydrate-binding domain modestly resembling family 16 carbohydrate-binding module (CBM16), a family 32 CBM (CBM32) domain, and an alginate lyase domain belonging to polysaccharide lyase family 7 (PL7). Although AlyQ can also act on polyguluronate (poly-G) and polymannuronate (poly-M), it is most active on alginate. Studies with truncated AlyQ showed that the CBM32 domain did not contribute to enhancing AlyQ's activity under the assayed conditions. Nevertheless, it could bind to cleaved but not intact alginate, indicating that the CBM32 domain recognises alginate termini. The crystal structure containing both CBM32 and catalytic domains show that they do not interact with one another. The CBM32 domain contains a conserved Arg that may bind to the carboxyl group of alginate. The catalytic domain, meanwhile, shares a conserved substrate-binding groove, and the presence of two negatively charged Asp residues may dictate substrate specificity especially at subsite +1. As Persicobacter sp. CCB-QB2 was unable to utilise alginate, AlyQ may function to help the bacterium degrade cell walls more efficiently.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5651945 | PMC |
http://dx.doi.org/10.1038/s41598-017-13288-1 | DOI Listing |
Int J Biol Macromol
May 2024
Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China. Electronic address:
β-1,3-Galactanases selectively degrade β-1,3-galactan, thus it is an attractive enzyme technique to map high-galactan structure and prepare galactooligosaccharides. In this work, a gene encoding exo-β-1,3-galactanase (PxGal43) was screened form Paenibacillus xylanexedens, consisting of a GH43 domain, a CBM32 domain and α-L-arabinofuranosidase B (AbfB) domain. Using β-1,3-galactan (AG-II-P) as substrate, the recombined enzyme expressed in Escherichia coli BL21 (DE3) exhibited an optimal activity at pH 7.
View Article and Find Full Text PDFCarbohydr Res
February 2024
College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing City, Jiangsu, 211816, PR China. Electronic address:
Oligosaccharide degradation products of alginate (AOS) hold significant potential in diverse fields, including pharmaceuticals, health foods, textiles, and agricultural production. Enzymatic alginate degradation is appealing due to its mild conditions, predictable activity, high yields, and controllability. However, the alginate degradation often results in a complex mixture of oligosaccharides, necessitating costly purification to isolate highly active oligosaccharides with a specific degree of polymerization (DP).
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
May 2023
Novozymes A/S, Biologiens Vej 2, 2800 Kongens Lyngby, Denmark.
Many secreted eukaryotic proteins are N-glycosylated with oligosaccharides composed of a high-mannose N-glycan core and, in the specific case of yeast cell-wall proteins, an extended α-1,6-mannan backbone carrying a number of α-1,2- and α-1,3-mannose substituents of varying lengths. α-Mannosidases from CAZy family GH92 release terminal mannose residues from these N-glycans, providing access for the α-endomannanases, which then degrade the α-mannan backbone. Most characterized GH92 α-mannosidases consist of a single catalytic domain, while a few have extra domains including putative carbohydrate-binding modules (CBMs).
View Article and Find Full Text PDFGlycobiology
November 2022
Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
N-glycans are modified by glycosyltransferases in the endoplasmic reticulum and Golgi apparatus. N-acetylglucosaminyltransferase IV (GnT-IV) is a Golgi-localized glycosyltransferase that synthesizes complex-type N-glycans in vertebrates. This enzyme attaches N-acetylglucosamine (GlcNAc) to the α-1,3-linked mannose branch of the N-glycan core structure via a β-1,4 linkage.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
December 2021
York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom.
β-Galactosidases catalyse the hydrolysis of lactose into galactose and glucose; as an alternative reaction, some β-galactosidases also catalyse the formation of galactooligosaccharides by transglycosylation. Both reactions have industrial importance: lactose hydrolysis is used to produce lactose-free milk, while galactooligosaccharides have been shown to act as prebiotics. For some multi-domain β-galactosidases, the hydrolysis/transglycosylation ratio can be modified by the truncation of carbohydrate-binding modules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!