Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Plenty of SH3 (POSH) was originally found to be a key regulator of neuronal apoptosis, axon outgrowth, and neuronal migration. However, the role of POSH in epilepsy has not been reported.
Methods: We investigated the expression of POSH in patients with intractable temporal epilepsy (TLE) and in a kainic acid (KA)-induced mouse model, and then we performed behavioral, electrophysiological and biochemical analyses after the lentivirus (LV)-mediated knockdown or overexpression of POSH in the KA-induced model.
Results: POSH overexpression shortened the latency of seizure onset, increased the frequency of spontaneous recurrent seizures, and increased the frequency of electrical epileptic discharges, while POSH knockdown had contrasting effects. Whole-cell patch-clamp recordings confirmed that POSH overexpression and knockdown were associated with increased and decreased miniature excitatory postsynaptic currents (mEPSCs) and N-methyl-D-aspartate receptor (NMDAR)-mediated currents, respectively. Finally, co-immunoprecipitation showed that POSH and NMDA receptor subunit 1 (NMDAR1) precipitated with each other, and western blot analysis revealed that the surface expression of NMDAR1 was altered in the hippocampus of epileptic mice.
Conclusion: These results show that POSH plays a critical role in the progression of epileptic seizures via NMDAR trafficking and suggest that the protein is a novel target for the treatment of human epilepsy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14728222.2017.1394456 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!