Precise control over the valency of quantum dots (QDs) is critical and fundamental for quantitative imaging in living cells. However, prior approaches on valence control of QDs remain restricted to single types of valences. A DNA-programmed general strategy is presented for valence engineering of QDs with high modularity and high yield. By employing a series of programmable DNA scaffolds, QDs were generated with tunable valences in a single step with near-quantitative yield (>95 %). The use of these valence-engineered QDs was further demonstrated to develop 12 types of topologically organized QDs-QDs and QDs-AuNPs and 4 types of fluorescent resonance energy transfer (FRET) nanostructures. Quantitative analysis of the FRET nanostructures and live-cell imaging reveal the high potential of these nanoprobes in bioimaging and nanophotonic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201710309 | DOI Listing |
J Colloid Interface Sci
December 2024
Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sports Complex, P.O. Box 14665, 1998 Tehran, Iran.
Herein, a novel nanocomposite was developed to adjust the textural properties of metal-organic frameworks (MOFs) for adsorptive applications. To this end, nitrogen-doped carbon quantum dots/reduced graphene oxide nanocomposite (RC) was embedded into MIL-101(Cr) crystals, named RC-ML-x nanocomposites. The prepared nanoadsorbents were thoroughly characterized by different techniques.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Biofuel Laboratory, Department of Energy, Tezpur University, Assam, 784028, India.
Agro-processing industries generate a substantial quantity of biomass wastes. Conversion of these wastes into valuable material could be profitable considering both environmental and economic aspects. Among various biomass conversion methods, hydrothermal conversion can be used for co-production of biofuel and other valuable materials like carbon quantum dots (CQDs) and activated carbons.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
McKetta Department of Chemical Engineering and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States.
Germanium (Ge) colloidal quantum dots (CQDs) were synthesized by thermal decomposition of GeI using capping ligand mixtures of oleylamine (OAm), octadecene (ODE), and trioctylphosphine (TOP). Average diameters could be tuned across a wide range, from 3 to 18 nm, by adjusting reactant concentrations, heating rates, and reaction temperatures. OAm promotes decomposition of GeI to Ge and serves as a weakly bound capping ligand.
View Article and Find Full Text PDFAnal Methods
January 2025
School of Public Health, Hebei Medical University, Shijiazhuang, 050017, P.R. China.
In this study, a molecularly imprinted electrochemical sensor (MIECS) was constructed based on the combination of graphene quantum dots-gold nanoparticles (GQDs-AuNPs), molecular imprinting polymer (MIP), and electrochemical technology for the ultra-sensitive detection of 17β-estradiol (E). GQDs-AuNPs were synthesized and modified on the surface of glassy carbon electrodes (GCE). Safranine T was used as the functional monomer and E was the template molecule for self-assembly and electropolymerization, thus generating an MIP film on the electrode surface.
View Article and Find Full Text PDFJ Drug Target
January 2025
The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia.
Vision loss and blindness are significant issues in both developed and developing countries. There are a wide variety of aetiologies that can cause vision loss, which are outlined in this review. Although treatment has significantly improved over time for some conditions, nearly half of all people with vision impairment are left untreated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!