We have studied processes of gold ion implantation in polyethylene (PE) by theoretical chemistry methods. Car-Parrinello molecular dynamics (CPMD) simulations of collisions and following chemical kinetics considerations lead to the conclusion that chemical bonds between gold atoms and PE chains are formed. We have identified and characterized by a DFT method various stable structures with C-Au, C-Au-C, C-Au-H and C-AuH types of chemical bonds. The binding energies (BE) of C-Au bonds are as high as 227 kJ mol and the bond analysis reveals a covalent bonding character. For the experimental detection of these structures in gold implanted PE, we predicted characteristic infra-red (IR) frequencies. The C-Au stretching vibrational modes lie around 500 cm. Other characteristic frequencies lie in a band between 730 cm and 1500 cm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp05637k | DOI Listing |
Int J Implant Dent
January 2025
Lecturer at removable prosthodontic department, Faculty of dental medicine for Girls, Al-Azhar University, Cairo, Egypt.
Purpose: In this randomized clinical trial, we examined the incorporation of nanogold particles into polymethyl methacrylate denture bases and compared these modified bases with conventional ones in mandibular implant-retained overdentures, focusing on microbiological growth and adhesion characteristics.
Methods: In this study, twenty-two male patients who were completely edentulous participated in a rehabilitation program involving mandibular overdentures retained by two dental implants placed in the canine area. The subjects were categorized into two equal groups, each comprising eleven patients.
Arch Orthop Trauma Surg
January 2025
University Hospital Merkur, Zagreb, Croatia.
Adequate intraoperative visualization is mandatory for implant application in pelvic ring injuries. Several fluoroscopic X-ray views are in practical use. The gold standard primary X-ray is the anteroposterior view of the pelvis.
View Article and Find Full Text PDFACS Nano
January 2025
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark.
There is an increasing demand for a suitable bone substitute to replace current clinical gold standard autografts or allografts. Majority of previous studies have focused on the early effects of substitutes on bone formation, while information on their long-term efficacies remains limited. This study investigated the efficacies of natural hydroxyapatite (nHA) derived from oyster shells and synthetic hydroxyapatite mixed with collagen (COL/HA) or chitosan (CS/HA) on bone regeneration and implant fixation in sheep.
View Article and Find Full Text PDFCatheter Cardiovasc Interv
January 2025
Division of Cardiovascular Diseases, Bridgeport Hospital, Yale New Haven Health, Bridgeport, Connecticut, USA.
Background: The co-existence of severe aortic stenosis (AS) and hypertrophic cardiomyopathy (HCM) is not uncommon. Surgical intervention is the gold standard management. Patients with high surgical risk might undergo transcatheter aortic valve replacement (TAVR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!