Salt-induced thermochromism of a conjugated polyelectrolyte.

Phys Chem Chem Phys

Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland.

Published: November 2017

We report here the photophysical properties of a water-soluble conjugated polythiophene with cationic side-chains. When dissolved in aqueous buffer solution (PBS, phosphate buffered saline), there is ordering of the polymer chains due to the presence of the salts, in contrast to pure water, where a random-coil conformation is adopted at room temperature. The ordering leads to a pronounced colour change of the solution (the absorption maximum shifts from 400 nm to 525 nm). Combining resonance Raman spectroscopy with density functional theory computations, we show a significant backbone planarization in the ordered phase. Moreover, the ratio of ordered phase to random-coil phase in PBS solution, as well as the extent of intermolecular interactions in the ordered phase, can be tuned by varying the temperature. Femtosecond transient absorption spectroscopy reveals that the excited-state behaviour of the polyelectrolyte is strongly affected by the degree of ordering. While triplet state formation is favoured in the random-coil chains, the ordered chains show a weak yield of polarons, related to interchain interactions. The investigated polyelectrolyte has been previously used as a biological DNA sensor, based on optical transduction when the conformation of the polyelectrolyte changes during assembly with the biomolecule. Therefore, our results, by correlating the photophysical properties of the polyelectrolyte to backbone and intermolecular conformation in a biologically relevant buffer, provide a significant step forward in understanding the mechanism of the biological sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp02734fDOI Listing

Publication Analysis

Top Keywords

ordered phase
12
photophysical properties
8
polyelectrolyte
5
salt-induced thermochromism
4
thermochromism conjugated
4
conjugated polyelectrolyte
4
polyelectrolyte report
4
report photophysical
4
properties water-soluble
4
water-soluble conjugated
4

Similar Publications

Partial wave analysis is key to interpretation of the photoionization of atoms and molecules on the attosecond timescale. Here we propose a heterodyne analysis approach, based on the delay-resolved anisotropy parameters to reveal the role played by high-order partial waves during photoionization. This extends the Reconstruction of Attosecond Beating By Interference of Two-photon Transitions technique into the few-photon regime.

View Article and Find Full Text PDF

Curvature Dependence of Gravitational-Wave Tests of General Relativity.

Phys Rev Lett

December 2024

Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA.

High-energy extensions to general relativity modify the Einstein-Hilbert action with higher-order curvature corrections and theory-specific coupling constants. The order of these corrections imprints a universal curvature dependence on observations while the coupling constant controls the deviation strength. In this Letter, we leverage the theory-independent expectation that modifications to the action of a given order in spacetime curvature (Riemann tensor and contractions) lead to observational deviations that scale with the system length scale to a corresponding power.

View Article and Find Full Text PDF

Developing high-precision models of the nuclear force and propagating the associated uncertainties in quantum many-body calculations of nuclei and nuclear matter remain key challenges for ab initio nuclear theory. In this Letter, we demonstrate that generative machine learning models can construct novel instances of the nucleon-nucleon interaction when trained on existing potentials from the literature. In particular, we train the generative model on nucleon-nucleon potentials derived at second and third order in chiral effective field theory and at three different choices of the resolution scale.

View Article and Find Full Text PDF

Pump-probe response of the spin-orbit coupled Mott insulator Sr_{2}IrO_{4} reveals a rapid creation of low-energy optical weight and suppression of three-dimensional magnetic order on laser pumping. Postpump there is a quick reduction of the optical weight but a very slow recovery of the magnetic order-the difference is attributed to weak interlayer exchange in Sr_{2}IrO_{4} delaying the recovery of three-dimensional magnetic order. We suggest that the effect has a very different and more fundamental origin.

View Article and Find Full Text PDF

Recently, robust d-wave superconductive (SC) order has been unveiled in the ground state of the 2D t-t^{'}-J model-with both nearest-neighbor (t) and next-nearest-neighbor (t^{'}) hoppings-by density matrix renormalization group studies. However, there is currently a debate on whether the d-wave SC holds up strong on both t^{'}/t>0 and t^{'}/t<0 cases for the t-t^{'}-J model, which correspond to the electron- and hole-doped sides of the cuprate phase diagram, respectively. Here, we exploit state-of-the-art thermal tensor network approach to accurately obtain the phase diagram of the t-t^{'}-J model on cylinders with widths up to W=6 and down to low temperature as T/J≃0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!