Global aging is a hallmark of our century. The natural multifactorial process resulting in aging involves structural and functional changes, affecting molecules, cells, and tissues. As the western population is getting older, we are witnessing an increase in the burden of cardiovascular events, some of which are known to be directly linked to cellular senescence and dysfunction. In this review, we will focus on the description of a few circulating molecules, which have been correlated to life span, aging, and cardiovascular homeostasis. We will review the current literature concerning the circulating levels and related signaling pathways of selected proteins (insulin-like growth factor 1, growth and differentiation factor-11, and PAI-1) and microRNAs of interest (miR-34a, miR-146a, miR-21), whose bloodstream levels have been associated to aging in different organisms. In particular, we will also discuss their potential role in the biology and senescence of cardiovascular regenerative cell types, such as endothelial progenitor cells, mesenchymal stromal cells, and cardiac progenitor cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5635266PMC
http://dx.doi.org/10.3389/fcvm.2017.00062DOI Listing

Publication Analysis

Top Keywords

circulating molecules
8
senescence cardiovascular
8
cardiovascular regenerative
8
progenitor cells
8
aging
5
cells
5
blood circulating
4
molecules aging
4
aging senescence
4
cardiovascular
4

Similar Publications

Osteosarcoma (OS) is distinguished as a high-grade malignant tumor, characterized by rapid systemic metastasis, particularly to the lungs, resulting in very low survival rates. Understanding the complexities of tumor development and mutation is the need of the hour for the advancement of targeted therapies in cancer care. A significant innovation in this area is the use of nanotechnology, specifically nanoparticles, to tackle various challenges in cancer treatment.

View Article and Find Full Text PDF

Background: Patients with chronic hepatitis B virus (HBV) infection are characterized by impaired immune response that fails to eliminate HBV. Immune checkpoint molecules (ICMs) control the amplitude of the activation and function of immune cells, which makes them the key regulators of immune response.

Methods: We performed a multiparametric flow cytometry analysis of ICMs and determined their expression on intrahepatic lymphocyte subsets in untreated and treated patients with HBV in comparison with non-pathological liver tissue.

View Article and Find Full Text PDF

Upregulation of HSP90α in the lungs and circulation in sarcoidosis.

Front Med (Lausanne)

January 2025

Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada.

Background: Sarcoidosis is a systemic granulomatous disease of unknown cause. Natural improvement with favorable outcome is common, but a significant number of patients present with difficult to manage and progressive disease. The identification of biomarkers associated with disease activity and progression is warranted.

View Article and Find Full Text PDF

Insulin plays a key role in metabolic homeostasis. insulin-producing cells (IPCs) are functional analogues of mammalian pancreatic beta cells and release insulin directly into circulation. To investigate the in vivo dynamics of IPC activity, we quantified the effects of nutritional and internal state changes on IPCs using electrophysiological recordings.

View Article and Find Full Text PDF

Deep photocatalytic NO oxidation on ZnTi-LDH: Pivotal role of surface hydroxyls dynamic evolution.

J Hazard Mater

January 2025

Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.

Surface defect engineering has been regarded as an appealing strategy to improve photocatalytic performance, but defects are susceptible to inactivation and thus lose their function as active sites. In this study, we successfully tailored and identified the dynamic evolution of surface hydroxyl defects over ZnTi-layered double hydroxide (ZnTi-LDH) photocatalyst. The enrichment of surface hydroxyl electrons and the dynamic circulation of hydroxyl defects result in enhanced separation and transport capabilities of photogenerated carriers, thereby ensuring the perpetual activation of small molecules into •O and •OH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!