The oncometabolite 2-hydroxyglutarate (2-HG) is a signature biomarker in various cancers, where it accumulates as a result of mutations in isocitrate dehydrogenase (IDH). The metabolic source of 2-HG, in a wide variety of cancers, dictates both its generation and also potential therapeutic strategies, but this remains difficult to access in vivo. Here, utilizing patient-derived chondrosarcoma cells harboring endogenous mutations in IDH1 and IDH2, we report that 2-HG can be rapidly generated from glutamine in vitro. Then, using hyperpolarized magnetic resonance imaging (HP-MRI), we demonstrate that in vivo HP [1-C] glutamine can be used to non-invasively measure glutamine-derived HP 2-HG production. This can be readily modulated utilizing a selective IDH1 inhibitor, opening the door to targeting glutamine-derived 2-HG therapeutically. Rapid rates of HP 2-HG generation in vivo further demonstrate that, in a context-dependent manner, glutamine can be a primary carbon source for 2-HG production in mutant IDH tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5718944 | PMC |
http://dx.doi.org/10.1016/j.cmet.2017.10.001 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
Glioblastoma (GBM) is defined by heterogeneous and resilient cell populations that closely reflect neurodevelopmental cell types. Although it is clear that GBM echoes early and immature cell states, identifying the specific developmental programmes disrupted in these tumours has been hindered by a lack of high-resolution trajectories of glial and neuronal lineages. Here we delineate the course of human astrocyte maturation to uncover discrete developmental stages and attributes mirrored by GBM.
View Article and Find Full Text PDFOrphanet J Rare Dis
November 2024
Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuro-oncologie, Paris, France.
Sci Rep
November 2024
Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
J Neurosurg
October 2024
1Departments of Neurosurgery and.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!