α-Actinin-4 confers radioresistance coupled invasiveness in breast cancer cells through AKT pathway.

Biochim Biophys Acta Mol Cell Res

Biosciences and Bioengineering Department, IIT Bombay, Mumbai, India. Electronic address:

Published: January 2018

Acquired radioresistance accompanied with increased metastatic potential is a major hurdle in effective radiotherapy of breast cancers. However, the nature of their inter-dependence and the underlying mechanism remains largely intangible. By employing radioresistant (RR) cell lines, we herein demonstrate that MCF-7 RR cells display phenotypic and molecular alterations evocative of epithelial to mesenchymal transition (EMT) with increased traction forces and membrane ruffling culminating in boosted invasiveness. We then show that these changes can be attributed to overexpression of alpha-actinin-4 (ACTN4), with ACTN4 knockdown near-completely abrogating both radioresistance and EMT-associated changes. We further found that in MCF-7 RR cells, ACTN4 mediates the observed effects by activating AKT, and downstream AKT/GSK3β signalling. Though ACTN4 plays a similar role in mediating radioresistance and invasiveness in MDA-MB-231 RR cells, co-immunoprecipitation studies reveal that these changes are effected through increased association with AKT and not by overexpression of AKT. Taken together, our study identifies ACTN4/AKT/GSK3β as a novel pathway regulating radioresistance coupled invasion which can be further explored to improve the radiotherapeutic gain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2017.10.006DOI Listing

Publication Analysis

Top Keywords

radioresistance coupled
8
mcf-7 cells
8
radioresistance
5
α-actinin-4 confers
4
confers radioresistance
4
coupled invasiveness
4
invasiveness breast
4
breast cancer
4
cells
4
cancer cells
4

Similar Publications

Article Synopsis
  • Radiotherapy resistance significantly impacts the treatment outcomes for esophageal squamous cell carcinoma (ESCC), highlighting the need to understand its underlying mechanisms.
  • Researchers identified GPR37 as a crucial factor that enhances radiosensitivity in ESCC, noting its low expression in radioresistant tumors correlating with worse patient prognosis.
  • GPR37 functions by interacting with ATP1A1 to promote its degradation, inhibiting the AKT/mTOR signaling pathway, and can also be transferred to other cells via exosomes to reduce their malignant behavior, making it a promising therapeutic target to improve radiotherapy effectiveness.
View Article and Find Full Text PDF

Background: Clinical carbon ion beams offer the potential to overcome hypoxia-induced radioresistance in pancreatic tumors, due to their high dose-averaged Linear Energy Transfer (LETd), as previous studies have linked a minimum LETd within the tumor to improved local control. Current clinical practices at the Heidelberg Ion-Beam Therapy Center (HIT), which use two posterior beams, do not fully exploit the LETd advantage of carbon ions, as the high LETd is primarily focused on the beams' distal edges. Different LETd-boosting strategies, such as Spot-scanning Hadron Arc (SHArc), could enhance LETd distribution by concentrating high-LETd values in potential hypoxic tumor cores while sparing organs at risk.

View Article and Find Full Text PDF

To overcome chondrosarcoma's (CHS) high chemo- and radioresistance, we used polyethylene glycol-encapsulated iron oxide nanoparticles (IONPs) for the controlled delivery of the chemotherapeutic doxorubicin (IONP) to amplify the cytotoxicity of proton radiation therapy. Human 2D CHS SW1353 cells were treated with protons (linear energy transfer (LET): 1.6 and 12.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most aggressive form of glioma with a high rate of relapse despite intensive treatment. Tumor recurrence is tightly linked to radio-resistance, which in turn is associated with hypoxia. Here, we discovered a strong link between hypoxia and local complement signaling using publicly available bulk, single-cell, and spatially resolved transcriptomic data from patients with GBM.

View Article and Find Full Text PDF

Breast cancer is the most common cancer globally in terms of incidence. This cancer is classified into subtypes based on histological or immunological characteristics. HER2-positive cases account for 15-25% of breast cancer cases, and one of the first events in breast carcinogenesis is HER2 upregulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!