The lack of studies on the fate and effects of drug metabolites in the environment is of concern. As their parent compounds, metabolites enter the aquatic environment and are subject to biotic and abiotic process. In this regard, photolysis plays an important role. This study combined experimental and in silico quantitative structure-activity relationship (QSAR) methods to assess the fate and effects of Mesoridazine (MESO), a pharmacologically active human drug and metabolite of the antipsychotic agent Thioridazine, and its transformation products (TPs) formed through a Xenon lamp irradiation. After 256min, the photodegradation of MESO⋅besylate (50mgL) achieved 90.4% and 6.9% of primary elimination and mineralization, respectively. The photon flux emitted by the lamp (200-600nm) was 169.55Jcm. Sixteen TPs were detected by means of liquid chromatography-high resolution mass spectrometry (LC-HRMS), and the structures were proposed based on MS fragmentation patterns. The main transformation reactions were sulfoxidation, hydroxylation, dehydrogenation, and sulfoxide elimination. A back-transformation of MESO to Thioridazine was evidenced. Aerobic biodegradation tests (OECD 301 D and 301F) were applied to MESO and the mixture of TPs present after 256min of photolysis. Most of TPs were not biodegraded, demonstrating their tendency to persist in aquatic environments. The ecotoxicity towards Vibrio fischeri showed a decrease in toxicity during the photolysis process. The in silico QSAR tools QSARINS and US-EPA PBT profiler were applied for the screening of TPs with character of persistence, bioaccumulation, and toxicity (PBT). They have revealed the carbazole derivatives TP 355 and TP 337 as PBT/vPvB (very persistent and very bioaccumulative) compounds. In silico QSAR predictions for mutagenicity and genotoxicity provided by CASE Ultra and Leadscope® indicated positive alerts for mutagenicity on TP 355 and TP 337. Further studies regarding the carbazole derivative TPs should be considered to confirm their hazardous character.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.08.040 | DOI Listing |
J Chem Inf Model
January 2025
Department of Modeling and Informatics, Merck & Co., Inc., Rahway, New Jersey 07065, United States.
Potency optimization of macrocyclic peptides can include both modifying intermolecular interactions and modifying the conformational stability of the bioactive conformation. However, the number of possible modifications is vast. To identify modifications that enhance the stability of the binding conformations in a cost-effective manner, there is a need for a high-throughput in-silico method that scores the conformational stability of these modified molecules.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Haematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China.
Background: Methicillin-resistant (MRSA) poses a significant challenge in clinical environments due to its resistance to standard antibiotics. Protein A (SpA), a crucial virulence factor of MRSA, undermines host immune responses, making it an attractive target for vaccine development. This study aimed to identify potential epitopes within SpA that could elicit robust immune responses, ultimately contributing to the combat against multidrug-resistant (MDR) MRSA.
View Article and Find Full Text PDFClin Transl Radiat Oncol
March 2025
Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
Background And Purpose: Understanding the cellular and molecular effect of proton radiation, particularly the increased DNA damage complexity at the distal end of the Bragg curve, is current topic of investigation. This work aims to study clonogenic survival and DNA damage foci kinetics of a head and neck squamous cell carcinoma cell line at various positions along a double passively scattered Bragg curve. Complementary studies are conducted to gain insights into the link between cell survival variations, experimentally yielded foci and the number and complexity of double strand breaks (DSBs).
View Article and Find Full Text PDFJ R Soc Interface
January 2025
SSM- School for Advanced Studies Via Mezzocannone 4, Naples 80138, Italy.
This article presents the first implementation of a proportional-integral-derivative (PID) biomolecular controller within a consortium of different cell populations, aimed at robust regulation of biological processes. By leveraging the modularity and cooperative dynamics of multiple engineered cell populations, we develop a comprehensive analysis of the performance and robustness of P, PD, PI and PID control architectures. Our theoretical findings, validated through experiments using the BSim agent-based simulation platform for bacterial populations, demonstrate the robustness and effectiveness of our multicellular PID control strategy.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2025
Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
Public health is seriously threatened by the highly pathogenic zoonotic Nipah virus (NIV). Since no effective medicines or vaccines exist, it is imperative to investigate potential therapeutic molecules against NIV. In this research, we concentrated on the G-glycoprotein of NIV as a potential therapeutic target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!