In two papers, Becke [J. Chem. Phys. 119, 2972 (2003) and J. Chem. Phys. 122, 064101 (2005)] introduced Kohn-Sham density-functional approximations for static and dynamical correlation to be partnered with 100 percent exactly computed exchange. Known as "B05," this was the first non-local correlation model designed to work with the full non-locality of exact (or Hartree-Fock) exchange. Non-locality issues, often referred to as the "delocalization" problem, are among the most vexing problems in density-functional theory today. How much exact exchange should be used in a hybrid functional? What value of the range parameter should be used in a long-range corrected functional? Questions such as these abound, and the answers are system dependent. The physics of non-locality is built into the B05 functional in a natural way, and one wonders, therefore, if B05 might provide a mechanism to answer such questions. Here we explore a variational procedure, "B05min," to do so. We compute dipole moments of 52 small molecules and find that B05min delivers better moments than parent hybrid and long-range corrected functionals. Furthermore, B05min provides a priori optimum exact-exchange mixing fractions and range parameters for the parent functionals, whose values agree with literature values fit to experimental data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.5000909 | DOI Listing |
J Phys Chem Lett
January 2025
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
The Ni-N(His) coordination bond, formed between the nickel ion and histidine residues, is essential for recombinant protein purification, especially in Ni-NTA-based systems for selectively binding polyhistidine-tagged (Histag) proteins. While previous studies have explored its bond strength in a synthetic Ni-NTA-Histag system, the influence of the surrounding protein structure remains less understood. In this study, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to quantify the Ni-N(His) bond strength in calprotectin, a biologically relevant protein system.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Mechanoresponsive colloidal photonic crystals embedded in elastic solid matrices exhibit tunable optical properties under mechanical force, showing great potential for various applications. However, the response of colloidal crystals embedded in a liquid matrix remains largely unexplored. In this study, we investigate the structural and optical transitions of colloidal crystals composed of particles suspended in a liquid oligomer under pressing and shear forces.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
Both silicon and carbon are elements located in group 14 on the periodic table. Despite some similarities between these two elements, differences in reactivity are important, and whereas carbon is a central element in all known forms of life, silicon is barely found in biological systems. Here, we investigate the Diels-Alder cycloaddition reaction of cyclopentadiene (CP) and cyclopentasildiene (CP) with fullerenes C, Li@C, Si, and Li@Si using density functional theory methods.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
College of Chemistry and Chemical Engineering, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, P. R. China.
Defect engineering is an important method to control material properties. In this paper, large-scale sampling density functional theory (DFT) was used to investigate the adsorption and sensing behavior of NH and NO on a WSe monolayer, with a focus on the effect of selenium vacancy concentration. The results demonstrate that selectivity is inhibited on a perfect monolayer due to the similar adsorption energy of the two gases, NH and NO, while selectivity can be obtained for both of them under different selenium vacancy concentrations (NH about 2-5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!