Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.13949 | DOI Listing |
Glob Chang Biol
January 2025
Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark.
Afforestation is increasingly recognized as a critical strategy to restore ecosystems and enhance biodiversity on post-agricultural landscapes. However, agricultural legacies, such as altered soil structure, nutrient imbalances, and depleted microbial diversity, can slow down forest establishment or cause ecosystems to deviate from expected successional trajectories. In this opinion paper, we explore the potential of soil inoculations as a tool to overcome these challenges by introducing beneficial microbial communities that can accelerate ecosystem recovery and forest development.
View Article and Find Full Text PDFJ Environ Manage
February 2025
Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China. Electronic address:
Grassland represents one of the most expansive terrestrial ecosystems, exerting a profound influence on atmospheric greenhouse gas (GHG) levels within the broader context of global change. Both climate and land use changes play important roles in modulating grassland GHG emissions by directly or indirectly altering soil physical and chemical properties, especially soil temperature and inorganic nitrogen content. The optimal grassland management practices need to simultaneously meet the requirements of reducing GHG emissions, maintaining biological biodiversity, and ensuring productivity.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Chemical Ecology, Bielefeld University, Bielefeld, Germany.
Some plant species produce an extraordinary diversity of specialized metabolites. The diverse class of terpenes is characteristic for many aromatic plants, and terpenes can occur as both emitted volatiles and stored compounds. Little is known about how intraspecific chemodiversity and phenotypic integration of both emitted volatile and stored terpenes differ intra-individually across plant development and between different plant parts, and studies considering both spatial and temporal scales are scarce.
View Article and Find Full Text PDFTree Physiol
January 2025
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd 17, SE-901 83 Umeå, Sweden.
Isotopic pulse-labelling of photosynthate allows tracing of carbon (C) from tree canopies to below-ground biota and calculations of its turnover in roots and recipient soil microorganisms. A high concentration of label is desirable but is difficult to achieve in field studies of intact ecosystem patches with trees. Moreover, root systems of trees overlap considerably in most forests, which requires a large labelled area to minimize the impact of C allocated below-ground by un-labelled trees.
View Article and Find Full Text PDFmSystems
January 2025
Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA.
, particularly uncultured representatives, are one of the most abundant microbial groups in coastal salt marshes, dominating the belowground rhizosphere, where over half of plant biomass production occurs. However, this class generally remains poorly understood, particularly in a salt marsh context. Here, novel metagenome-assembled genomes (MAGs) were generated from the salt marsh rhizosphere representing , , JAAYZQ01, B4-G1, JAFGEY01, UCB3, and orders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!