is a globally distributed cyanobacterium whose nitrogen-fixing capability fuels primary production in warm oligotrophic oceans. Like many photoautotrophs, serves as a host to various other microorganisms, yet little is known about how this associated community modulates fluxes of environmentally relevant chemical species into and out of the supraorganismal structure. Here, we utilized metatranscriptomics to examine gene expression activities of microbial communities associated with (strain IMS101) using laboratory-maintained enrichment cultures that have previously been shown to harbor microbial communities similar to those of natural populations. In enrichments maintained under two distinct CO concentrations for ∼8 years, the community transcriptional profiles were found to be specific to the treatment, demonstrating a restructuring of overall gene expression had occurred. Some of this restructuring involved significant increases in community respiration-related transcripts under elevated CO, potentially facilitating the corresponding measured increases in host nitrogen fixation rates. Particularly of note, in both treatments, community transcripts involved in the reduction of nitrate, nitrite, and nitrous oxide were detected, suggesting the associated organisms may play a role in colony-level nitrogen cycling. Lastly, a taxon-specific analysis revealed distinct ecological niches of consistently cooccurring major taxa that may enable, or even encourage, the stable cohabitation of a diverse community within consortia. is a genus of globally distributed, nitrogen-fixing marine cyanobacteria. As a source of new nitrogen in otherwise nitrogen-deficient systems, these organisms help fuel carbon fixation carried out by other more abundant photoautotrophs and thereby have significant roles in global nitrogen and carbon cycling. Members of the genus tend to form large macroscopic colonies that appear to perpetually host an association of diverse interacting microbes distinct from the surrounding seawater, potentially making the entire assemblage a unique miniature ecosystem. Since its first successful cultivation in the early 1990s, there have been questions about the potential interdependencies between and its associated microbial community and whether the host's seemingly enigmatic nitrogen fixation schema somehow involved or benefited from its epibionts. Here, we revisit these old questions with new technology and investigate gene expression activities of microbial communities living in association with .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5734019PMC
http://dx.doi.org/10.1128/AEM.02026-17DOI Listing

Publication Analysis

Top Keywords

activities microbial
12
gene expression
12
microbial communities
12
nitrogen cycling
8
globally distributed
8
expression activities
8
nitrogen fixation
8
nitrogen
6
community
6
microbial
5

Similar Publications

Semi-rational design of an aromatic dioxygenase by substrate tunnel redirection.

iScience

January 2025

State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

Lignin valorization is crucial for achieving economic and sustainable biorefinery processes. However, the enzyme substrate preferences involved in lignin degradation remain poorly understood, and low activity toward specific substrates presents a significant challenge to the efficient utilization of lignin. In this study, we investigated the substrate promiscuity of Ado, a key enzyme involved in lignin valorization.

View Article and Find Full Text PDF

Draft genome dataset of strain R-35 isolated from tidal pool sediments.

Data Brief

February 2025

Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, Bellville, Cape Town, 7530, South Africa.

The marine isolate, strain R-35, was isolated from marine sediments collected from the Glencairn Tidal Pool, Table Mountain National Park, Cape Town, South Africa. The genomic DNA was sequenced using the Ion Torrent GeneStudio™ S5 platform, and the assembly was performed using the SPAdes assembler on the Centre for High Performance Computing (CHPC) Lengau Cluster located at the CSIR, Rosebank, South Africa. The draft genome assembly consisted of 722 contigs totaling 7,625,174 base pairs and a G+C% content of 72.

View Article and Find Full Text PDF

Antarctica's harsh environmental conditions, characterized by high levels of ultraviolet (UV) radiation, pose challenges for microorganisms. To survive in these extreme cold regions with heightened UV exposure, microorganisms employ various adaptive strategies, including photoprotective carotenoid synthesis. Carotenoids are garnering attention in the skin health industry because of their UV photoprotection potential, given the direct relationship between UV exposure and skin burns, and cancer.

View Article and Find Full Text PDF

Despite major efforts toward its eradication, cholera remains a major health threat and economic burden in many low- and middle-income countries. Between outbreaks, the bacterium responsible for the disease, , survives in aquatic environmental reservoirs, where it commonly forms biofilms, for example, on zooplankton. -acetyl glucosamine-binding protein A (GbpA) is an adhesin that binds to the chitinaceous surface of zooplankton and breaks its dense crystalline packing thanks to its lytic polysaccharide monooxygenase (LPMO) activity, which provides with nutrients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!