Rapid urbanization in China has dramatically deteriorated the water quality of streams and threatening aquatic ecosystem health. This study aims to 1) assess the impacts of urbanization on water quality and macroinvertebrate composition and 2) address the question of how urbanization affects macroinvertebrate distribution patterns. Environmental variables over multispatial scales and macroinvertebrate community data were collected on April (dry season) and September (wet season) of 2014 and 2015 at 19 sampling sites, of which nine had a high urbanization level (HUL), six had moderate urbanization level (MUL) and four had low urbanization level (LUL), in the Liangjiang New Area. The results of this study showed that macroinvertebrate assemblages significantly varied across the three urbanization levels. The sensitive species (e.g., EPT taxa) were mainly centralized at LUL sites, whereas tolerant species, such as Tubificidae (17.3%), Chironomidae (12.1%), and Physidae (4.61%), reached highest relative abundance at LUL sites. The values of family biotic index (FBI) and biological monitoring working party (BMWP) indicated the deterioration of water quality along urbanization gradient. Seasonal and inter - annual changes in macroinvertebrate communities were not observed. The results of variation partitioning analyses (CCAs) showed that habitat scale variables explained the major variation in macroinvertebrate community composition. Specifically, the increased nutrient concentrations favored tolerant species, whereas high water flow and substrate coarseness benefitted community taxa richness, diversity and EPT richness. Considering the interactions between scale-related processes, the results of this study suggested that urbanization resulted in less diverse and more tolerant stream macroinvertebrate assemblages mainly via increased nutrient concentrations and reduced substrate coarseness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.10.068 | DOI Listing |
J Food Sci Technol
January 2025
Department of Flour Milling Baking and Confectionery Technology, Central Food Technological Research Institute, (Council of Scientific and Industrial Research), Mysore, 570020 India.
To study the characteristics of bread by incorporating nutrient-rich quinoa flour as a new source for product development. Wheat flour was replaced by fractionated quinoa flour in different variations from 0%QF to 20%QF: 0%, 5%, 10%, 15%, and 20% WQF blends, respectively. Physicochemical studies resulted in higher protein and fiber content for the higher blend.
View Article and Find Full Text PDFFront Vet Sci
January 2025
School of Science, STEM College, RMIT University, Melbourne, VIC, Australia.
Sustainability concerns have increased consumer demand for non-animal-derived proteins and the search for novel, alternative protein sources. The nutritional sustainability of the food system without compromising the nutrient quality, composition, digestibility and consumption is pivotal. As with farmed livestock, it is imperative to ensure the well-being and food security of companion animals and to develop sustainable and affordable pet foods.
View Article and Find Full Text PDFInt J Food Sci
January 2025
Food Science and Technology Programme, Faculty of Science and Technology, Phranakhon Rajabhat University, Bangkok, Thailand.
As global demand for plant-based foods increases due to their nutritional and environmental benefits, young jackfruit () is emerging as a promising meat alternative. This study evaluates the effects of heat treatments-specifically blanching for 5 min and boiling for 15, 30, and 45 min-on the quality and sensory attributes of jackfruit-based meatballs. The results indicate consistent color values ( , , and ) across the samples, with values ranging from 53.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
Carbon dots (CDs) are emerging novel fluorescent sensing nanomaterials owing to their tunable optical properties, biocompatibility, and eco-friendliness. Herein, we report a facile one-pot hydrothermal route for the synthesis of highly green fluorescent CDs using gallic acid (GA) as a single carbon source in ,-dimethylformamide (DMF) solvent, which serves as a nitrogen source and reaction medium. The optical properties of the synthesized GA-DMF CDs were systematically characterized by using UV-vis and photoluminescence spectroscopy, revealing strong green fluorescence.
View Article and Find Full Text PDFHeliyon
January 2025
Instituto Nacional do Semi-árido, Av. Francisco Lopes de Almeida, 4000, Serrotão, Campina Grande, 58434-700, Paraíba, Brazil.
Innovation in the drying process during the roasting of cashew nut almonds has the potential to significantly improve product quality. This study aimed to investigate the drying kinetics of the almond, comparing the experimental data with the mathematical models of Fick, Page, Cavalcanti Mata, and Henderson and Pabis. The research was conducted at the Laboratory of Physical Measurements and Drying of the Academic Unit of Food Engineering at the Federal University of Campina Grande.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!