A landscape ecotoxicology approach was used to assess the spatial distribution of copper in the recent bottom sediment (surficial sediment) of a Brazilian subtropical reservoir (the Guarapiranga reservoir) and its potential ecotoxicological impacts on the reservoir ecosystem and the local society. We discuss the policies and procedures that have been employed for the management of this reservoir over the past four decades. Spatial heterogeneity in the reservoir was evaluated by means of sampling design and statistical analysis based on kriging spatial interpolation. The sediment copper concentrations have been converted into qualitative categories in order to interpret the reservoir quality and the impacts of management policies. This conversion followed the Canadian Water Framework Directive (WFD) ecotoxicological concentration levels approach, employing sediment quality guidelines (SQGs). The SQG values were applied as the copper concentration thresholds for quantitative-qualitative conversion of data for the surficial sediment of the Guarapiranga. The SQGs used were as follows: a) interim sediment quality guideline (ISQG), b) probable effect level (PEL), and c) regional reference value (RRV). The quantitative results showed that the spatial distribution of copper in the recent bottom sediment reflected the reservoir's management policy and the copper application protocol, and that the copper concentrations varied considerably, ranging from virtually-zero to in excess of 3g/kg. The qualitative results demonstrated that the recent bottom sediment was predominantly in a bad or very bad condition, and could therefore have impacts on the local society and the ecosystem. It could be concluded that the management policy for this reservoir was mainly determined by the desire to minimize short-term costs, disregarding long-term socioeconomic and environmental consequences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.07.095 | DOI Listing |
Sci Rep
January 2025
Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
We examined the potential of environmental DNA (eDNA) for identifying tsunami deposits in the geological record using lake-bottom sediments in the Tohoku region, Japan. The presence of eDNA from marine organisms in a lacustrine event deposit provides very strong evidence that the deposit was formed by an influx of water from the ocean. The diverse DNA assemblage in the deposit formed by the 2011 Tohoku-oki tsunami included DNA of marine origin indicating that eDNA has potential as an identifying proxy for tsunami deposits.
View Article and Find Full Text PDFSci Rep
January 2025
School of Smarts Energy and Environment, Zhongyuan University of Technology, Zhengzhou, 450007, China.
The current researches on microplastics in different water layers of reservoirs remains limited. This study aims to investigate the microplastics in different water layers within a source water reservoir. Results revealed that the abundance of microplastics ranged from 2.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt. Electronic address:
Background: The highly industrialized areas characterize the delta coasts of the world, due to the discharging of large quantity of wastewater into the river estuaries. The entrance of phenolic compounds and PAHs into the aquatic environment has not been sufficiently studied on the Egyptian Mediterranean coast. The article examines the content and ecological risks associated with 11 phenolic compounds and 14 PAHs in the bottom sediments of the Nile River estuaries, the largest river systems that discharged into the Mediterranean Sea.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Earth and Planetary Sciences, University of California, Riverside, CA, 92521, USA.
The Salton Sea (SS), California's largest inland lake at 816 square kilometers, formed in 1905 from a levee breach in an area historically characterized by natural wet-dry cycles as Lake Cahuilla. Despite more than a century of untreated agricultural drainage inputs, there has not been a systematic assessment of nutrient loading, cycling, and associated ecological impacts at this iconic waterbody. The lake is now experiencing unprecedented degradation, particularly following the 2003 Quantification Settlement Agreement-the largest agricultural-to-urban water transfer in the United States.
View Article and Find Full Text PDFJ Acoust Soc Am
December 2024
Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA.
This article presents a spatial environmental inversion scheme using broadband impulse signals with deep learning (DL) to model a single spatially-varying sediment layer over a fixed basement. The method is applied to data from the Seabed Characterization Experiment 2022 (SBCEX22) in the New England Mud-Patch (NEMP). Signal Underwater Sound (SUS) explosive charges generated impulsive signals recorded by a distributed array of bottom-moored hydrophones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!