Algogenic organic matter (AOM) in eutrophic waters is a well-known precursor to disinfection by-product (DBP) formation in drinking water. This purpose of this study is (i) to characterize the optical properties of AOM origins, including intra- (IOM) and extra-cellular organic matter (EOM), derived from Chlorella sp. growth as precursors to two major carbonaceous DBPs (C-DBPs), trihalomethanes (THMs) and haloacetic acids (HAAs) and (ii) to correlate these optical properties with THM and HAA formation potential (FP) in order to predict DBP formation. The results show that both EOM and IOM had low UV and UV absorbance during their entire growth phase. While IOM chiefly comprised of aromatic proteins and soluble microbial products-like substances (80% of average fluorescent intensity-AFI), EOM spectra were rich in humic- and fulvic-like substances (60% AFI). However, its chemical nature likely differed from terrestrial humics. In DBPFP tests, IOM was a higher-yielding precursor of THMs and HAAs compared to EOM, regardless its growth status. Consequently, C-DBPFP of IOM was always higher than EOM during four growth phases. Results from DBP tests also showed insignificant variation of EOM-derived THMFP and HAAFP during the algal growth phase, while the algal growth status strongly influenced the yields of IOM-derived THMFP and HAAFP. From correlation analysis, our results showed no correlation between UV absorbance with THMFP and HAAFP. Conversely, the regional AFI showed a good correlation with HAAFP and C-DBPFP. Predicting models based on AFI for the formation of HAAs and C-DBPs consequently yielded great predictability for laboratory AOM-containing water samples, with a coefficient of determination R=0.879, p<0.01 and R=0.846, p<0.01. This study indicates a promising application of fluorescent spectra for predicting DBPs derived from algae-rich water sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.10.082 | DOI Listing |
ACS Nano
January 2025
Institute of Photonics and of Nanotechnologies- National Researcher Council (IFN-CNR), LNESS Laboratory, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy.
Manipulating the optical landscape of single quantum dots (QDs) is essential to increase the emitted photon output, enhancing their performance as chemical sensors and single-photon sources. Micro-optical structures are typically used for this task, with the drawback of a large size compared to the embedded single emitters. Nanophotonic architectures hold the promise to modify dramatically the emission properties of QDs, boosting light-matter interactions at the nanoscale, in ultracompact devices.
View Article and Find Full Text PDFLuminescence
January 2025
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
Currently, the development of red Mn-activated fluoride luminescent materials attracts a lot of attention in optical thermometry sensors, solid lighting, display, and plant growth areas. Nevertheless, the thermal stability of Mn-activated fluoride luminescent materials is still a crucial issue. Herein, a new red RbNaVF:Mn luminescent material with outstanding thermal stability was successfully synthesized through the facial coprecipitation method.
View Article and Find Full Text PDFAdv Mater
January 2025
Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.
In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.
View Article and Find Full Text PDFSmall Methods
January 2025
National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
Exploring potential third-order nonlinear optical (NLO) materials attracts ever-increasing attention. Given that the atomically precise and rich adjustable structural features of silver nanoclusters (Ag NCs), as well as the unique π-electron conjugated system of carbon-based nanomaterials, a supramolecular co-assembly amplification strategy to enhance the luminescent intensity and NLO performance of the hybrids of the two components, are constructed and the relationship between structures and optical properties are investigated. By combining water soluble Ag NCs [(NH)[Ag(mna)] (Hmna = 2-mercaptonicotinic acid, abbreviated to Ag─NCs hereafter) containing uncoordinated carboxyl groups with water-soluble fullerene derivatives modified with multiple hydroxyl groups (fullerenols, C─OH), the π-electron delocalization is expanded owing to non-covalent hydrogen bonding effect between Ag6─NCs and C─OH, which provides a feasible basis for realizing the NLO response.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, Viale Marconi 446, 00146 Rome, Italy.
: Diabetes is a well-recognised factor inducing a plethora of corneal alterations ranging from dry eye to reduced corneal sensibility, epithelial defects, and reduced cicatrisation. This cohort study aimed to assess the efficacy of a novel ophthalmic solution combining cross-linked hyaluronic acid (CHA), chondroitin sulfate (CS), and inositol (INS) in managing diabetes-induced corneal alterations. Specifically, it evaluated the solution's impact on the tear breakup time (TBUT), the ocular surface disease index (OSDI), and corneal sensitivity after three months of treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!